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Abstract

We present a recursive construction for difference sets which unifies the Hadamard,
McFarland and Spence parameter families and deals with all abelian groups known
to contain such difference sets. The construction yields a new family of difference sets
with parameters (v, k, A,n) = (22¢+4(229+2 1) /3, 22d+1(22d+3 4 1) /3, 22d+1(92d+1 4
1)/3, 249+2) for d > 0. The construction establishes that a McFarland difference
set exists in an abelian group of order 22¢+3(22d+! 4 1)/3 if and only if the Sy-
low 2-subgroup has exponent at most 4. The results depend on a second recursive
construction, for semi-regular relative difference sets with an elementary abelian for-
bidden subgroup of order p”. This second construction deals with all abelian groups
known to contain such relative difference sets and significantly improves on previous
results, particularly for » > 1. We show that the group order need not be a prime
power when the forbidden subgroup has order 2. We also show that the group order
can grow without bound while its Sylow p-subgroup has fixed rank and that this rank
can be as small as 2r. Both of the recursive constructions generalise to nonabelian
groups.
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1 Introduction

A k-element subset D of a finite multiplicative group G of order v is called a (v, k, A\, n)-
difference set in G provided that the multiset of “differences” {d;d, 1 | di,d2 € D,d; #
dy} contains each nonidentity element of G exactly A times; we write n = k — A. For
example, D = {z,22, 2%} is a (7,3, 1,2)-difference set in Z; = (z | 7 = 1). It is easy to
check that {y, z, zy, zy?, 2%y, £3y3}, {2, 12, 2%,y2%, 23, 2y} and {z, 22, w, yw, zw, Tyzw}
are examples of (16, 6,2, 4)-difference sets in the abelian groups Z2 = (z,y | z* = y* = 1),
Zy x 73 = (z,y,2 | 2 =22 =9y?> = 1) and 73 = (z,y,z,w | 22 = y*> = 22 = w? = 1)
respectively.

Difference sets arise in a wide variety of theoretical and applied contexts. They are
important in design theory because a (v, k, A\, n)-difference set in G is equivalent to a
symmetric (v, k, A, n)-design with a regular automorphism group G [32]. The study of
difference sets is also deeply connected with coding theory because the code, over a field F',
of the symmetric design corresponding to a (v, k, A\, n)-difference set may be considered
as the right ideal generated by D in the group algebra F'G [29], [32]. Difference sets
in abelian groups are the natural solution to many problems of signal design in digital
communications, including synchronisation [25], radar [1], coded aperture imaging [23],
[52] and optical image alignment [41]. For a recent survey of difference sets see Jungnickel
[29].

The central problem is to determine, for each parameter set (v, k, A, n), which groups
of order v contain a difference set with these parameters. An extensive literature has
been devoted to this problem, exposing considerable interplay between difference sets
and such diverse branches of mathematics as algebraic number theory, character theory,
representation theory, finite geometry and graph theory. Nonetheless the central prob-
lem remains open, both for abelian and nonabelian groups, except for heavily restricted
parameter sets. One of the most popular techniques for constructing a difference set or
for ruling out its existence is to consider the image of a hypothetical difference set under
mappings from the group G to one or more quotient groups G/U (see Ma and Schmidt
[40] for a recent example).

By a counting argument the parameters (v, k, A,n) of a difference set are related by
k(k —1) = AMv —1). We can assume that k& < v/2 because D is a (v, k, A, n)-difference
set in G if and only if the complement G\ D is a (v,v — k,v — 2k + A, n)-difference set in
G. The trivial cases k = 0 and k = 1 are usually excluded (although we shall use trivial
examples as the initial case of some recursive constructions). Besides these constraints,
difference sets are classified into families according to further relationships between the
parameters. A great deal of research on difference sets has focussed on two particular
families of parameters: the Hadamard family given by

(v,k, A\, n) = (4N?, N(2N — 1), N(N — 1), N?) (1)

for integer N > 1 (see Davis and Jedwab [13] for a survey), and the McFarland family
given by

d+1_1 d+1_1 d—l
(v,k, A, n) = (qd+1 (% + 1) , 4 (%) ,q° (‘2 — ) : q2d> (2)
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for q a prime power and integer d > 0 (see Ma and Schmidt [39] for a summary and new
results). The Hadamard family derives its name from the fact that D is a Hadamard
difference set if and only if the (+1,—1) incidence matrix of the design corresponding
to D is a regular Hadamard matrix [29], [55]. The Hadamard and McFarland families
intersect in 2-groups: the Hadamard family with N = 2% corresponds to the McFarland
family with ¢ = 2. The most recent discovery of a new family of parameters for which
difference sets exist was given by Spence [54] in 1977:

gd+1 _q g4+1 4 1 34 41
(v,k,/\,n) = <3d+1 <T> ’ 3d (T—I_ ) 3d T—l— ’ 32d (3)

for integer d > 0. Other families of difference set parameters include the Projective
Geometries, the Paley-Hadamard family and the Twin Prime Power family [4].

For each of these parameter families, difference sets have been constructed for infinitely
many values of the parameters, but not necessarily in all possible groups of each order.
A notable exception is abelian 2-groups, for which Kraemer [31] completely solved the
central problem: a Hadamard difference set exists in an abelian group G of order 224+2 if
and only if exp(G) < 2412, (The ezponent of a group G with identity 15, written exp(Q),
is the smallest integer « for which g* = 1 for all g € G.)

A powerful stimulus to the discovery of new results on difference sets has been the
identification of open cases in groups of relatively small order. For example, Dillon [18] led
a research programme to examine constructions and nonexistence results for Hadamard
difference sets in all 267 groups of order 64, which highlighted a single outstanding case.
The solution of this last case by Liebler and Smith [35] demonstrated that Turyn’s ex-
ponent bound [55] of 2¢+2 for Hadamard difference sets in abelian groups of order 22¢+2
can be exceeded in the nonabelian case. A subsequent collaborative effort to examine
Hadamard difference sets in groups of order 100 led to Smith’s surprising discovery [53] of
a nonabelian group of order 100 which contains a Hadamard difference set even though
no abelian group of this order does so! Another example is the table of existence of
difference sets in abelian groups with k£ < 50 produced by Lander [32], of which the last
open cases have recently been settled by J.E. liams [private communication, 1994]. In
1992 Jungnickel [29] modified the parameter range of this table to n < 30 and listed
three open cases, the last of which was settled when Arasu and Sehgal [3] exhibited a
(96,20,4,16) McFarland difference set in Z2 x Zy x Z3, having ¢ = 4 and d = 1. This
was the first example of a McFarland difference set having ¢ = 2" > 2 in a group whose
Sylow 2-subgroup does not have the form ngH)H_l, as constructed by McFarland [42],
or Z4 X ngﬂ)rfl, as constructed by Dillon [20]. Arasu and Sehgal’s discovery sparked a
search for a similar McFarland difference set in a larger group, for which the most likely
candidate was generally presumed to be a (640, 72, 8, 64)-difference set in Z2 x Z3 x Zs or
73 x Zo x Zs, having ¢ = 8 and d = 1. We were unable to settle these cases but managed
to construct new difference sets by transferring partial results from one of these groups
to a group of order 320. This new example led to many insights and eventually to the
results reported in this paper. In retrospect we believe that the natural generalisation of
Arasu and Sehgal’s example has ¢ = 4 and d > 1 rather than ¢ > 4 and d = 1.

In this paper we present a recursive construction for difference sets which, for the first
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time, unifies the Hadamard, McFarland and Spence families. No abelian group known to
contain a difference set with parameters from one of these families lies outside the scope
of this result (although certain initial examples required for the Hadamard family must
be constructed separately). The construction also yields the new parameter family

(v,k,\,mn) = (22d 4 <72 ’ 1) 92d+1 (7,231) 92d+1 <72 1 1) 24d 2)
T 3 ’ 3 ’ 3 ’
(4)

for integer d > 0, for which the smallest previously unknown abelian examples occur in
the groups Z§ x Zs, Z4 x Z3 x Z5 and 72 x Z% x Z5 with parameters (320, 88, 24,64). This
family of difference sets also represents a new family of symmetric designs with the same
parameters (4). In addition the construction establishes that a McFarland difference set
with ¢ = 4 exists in an abelian group of order 22¢+3(22¢+1 4 1)/3 if and only if the Sylow
2-subgroup has exponent at most 4. This necessary and sufficient condition is analogous
to Kraemer’s [31] result for the case ¢ = 2. The smallest previously unknown examples
occur in the groups Z2 x Z3 x Z11 and Z3 x Zo x Z11 with parameters (1408, 336, 80, 256).
The essential idea of the construction is to combine multiple copies of a difference set
with a semi-regular relative difference set to generate a difference set in a larger group.
A preliminary announcement of these results was given in [12].

A k-element subset R of a finite multiplicative group G of order mu containing a
normal subgroup U of order u is called a (m,u, k,\) relative difference set (RDS) in G
relative to U provided that the multiset {r;ry 1 | 71,72 € R, # ro} contains each element
of G\ U exactly XA times and contains no element of U. The subgroup U is sometimes
called the forbidden subgroup. (We have not used the conventional notation N for the
normal subgroup and n for its order so as to avoid confusion with the difference set
parameter n.) For example, R = {1,z,y, zy>, z, zy*2, 2?3z, 23932} is a (8,4,8,2) RDS
inZ2x7Zy = (x,y,z | 2* = y* = 22 = 1) relative to (z2,y?) = Z2. A (m,u,k,\) RDSin G,
relative to some normal subgroup U, is equivalent to a square divisible (m, u, k, A)-design
whose automorphism group G acts regularly on points and blocks [28]. For a recent
survey of RDSs see Pott [48]. The central problem is to determine, for each parameter
set (m,u,k, ), the groups G of order mu and the normal subgroups U of order u for
which G contains a RDS relative to U with these parameters.

By a counting argument the parameters (m,u, k, \) of a RDS are related by k(k—1) =
uA(m — 1). If & = u) then the RDS is called semi-regular and the parameters are
(uA, u,uX, A). In contrast to the situation for difference sets, the complement G \ R of a
RDS R is not in general a RDS. The trivial cases K = 0 and k£ = 1 are usually excluded.
A difference set can be considered as a RDS with 4 = 1. Furthermore the image of
a (m,u,k,A) RDS in G relative to U under the quotient mapping from G to G/U is
a (m,k,u) k — ul)-difference set in G/U. In particular, the image of a semi-regular
(uX, u,ur, ) RDS in G relative to U is a trivial (ul, uX, uA, 0)-difference set in G/U. A
great deal of attention has been paid to semi-regular RDSs in p-groups, whose parameters
have the form (p”,p",p",p¥~") for p prime. Indeed Pott [48] calls the central problem
for these RDSs “one of the most interesting questions about RDSs”. Ma and Schmidt
[37] have recently solved the central problem for 7 = 1 in the abelian case, with some
exceptions when w and p are odd, but describe the case r > 1 as “much more difficult”.
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In this paper we present a recursive construction for semi-regular RDSs in a group G
relative to a subgroup U = 77, where the Sylow p-subgroup of G has rank at least 2r. The
essential idea is to combine semi-regular RDSs in p” quotient groups of G to form a semi-
regular RDS in G. This RDS construction produces the families of RDSs needed for the
recursive difference set construction. It also establishes an extensive pattern of existence
for semi-regular RDSs relative to subgroups U = Z7, for each r > 1. This significantly
improves on the previous state of knowledge for semi-regular RDSs, particularly when
r > 1. The position of the subgroup U within the group G is of crucial importance in these
results. We show that the order of G can grow without bound while its Sylow p-subgroup
has fixed rank and that this rank can be as small as 2r. In the case p" = 2 we obtain
results for groups G whose order need not be a prime power, so that the RDS parameters
have the form (2X,2,2\, \) where X\ need not be a power of 2. In all other cases our
results are for p-groups G and so the RDS parameters have the form (p*,p",p",p¥ ") for
p prime. In particular, we improve on Ma and Schmidt’s result [37] to show that there
exists a (p¥,p, p¥,p¥ ') semi-regular RDS in any abelian group G of order p**! relative
to any subgroup U of order p except possibly when p is odd, w = 2d+1 is odd, and either
G = Z;,Hl or G = U X Zpa+1 X Zpa. We are not aware of any abelian groups G' known
to contain semi-regular RDSs relative to an elementary abelian subgroup which are not
covered by our results.

Difference sets are usually studied in the context of the group ring Z[G] of the group
G over the ring of integers Z. The definition of a (v, k, A, n)-difference set D in G is
equivalent to the equation DD("1) = nlg+ AG in Z[G], where by an abuse of notation we
have identified the sets D, D(-1) G with the respective group ring elements D = > dep 4,
DU =% pd !, G=Y,cq9, and 1g is the identity of G. Similarly the definition of
a (m,u,k,\) RDS R in G relative to U is equivalent to the equation RR(-1) = klg +
AMG —U) in Z[G].

An alternative viewpoint for considering difference sets and RDSs, predominant in
engineering papers, is via the correlation properties of binary arrays [27]. The (1,0)
binary array A corresponding to a subset D of G is (ag | g € G) defined by ag =1ifg € D
and a; =0 if g ¢ D. Then DDV = Ygec Ra(g)g in Z[G], where R4(g) = X peq anagn
is the autocorrelation of the array A at displacement g. The (4+1,—1) binary array
B = (by | g € G) is given by the linear transformation by = 1 — 2a,. When G is abelian
the binary arrays A and B can be represented as matrices. Although binary arrays do
not appear in this exposition we have found the (+1, —1) matrix representation to be an
invaluable tool for visualisation.

We now give some definitions and results which will be used freely throughout the
paper without further reference. We shall follow the practice (standard in the difference
set literature) of abusing notation by identifying sets with group ring elements, as de-
scribed above. Since we shall be concerned principally with abelian groups, all groups will
be implicitly abelian unless otherwise stated. We write [[;_; Z,, for the direct product
Zoy X Loy X =+ X Zg,. For w a positive integer and p prime, we call p self-conjugate
modulo w if p* = —1 (mod wy,) for some integer i, where w, is the largest divisor of w
coprime to p. In the abelian case, a character of the group G is a homomorphism from
G to the multiplicative group of complex roots of unity. Under pointwise multiplication



the set G* of characters of G forms a group isomorphic to G. The identity of this group
is the principal character that maps every element of G to 1. The character sum of a
character x over the group ring element C is x(C) = ¥ .cc x(c). It is well-known that
the character sum x(C) is 0 for all nonprincipal characters x of G if and only if C is
a multiple of G (regarded as a group ring element), and that 2 oxea x(g) is nonzero if
and only if ¢ = 1. If a character x is nonprincipal on G and principal on a subgroup
U then x induces a nonprincipal character ¢ on G/U defined by ¥ (gU) = x(g). (¢ is
well-defined because if g1U = goU then g1 = ugo for some u € U and x(u) = 1 for every
element u of U.)

The use of character sums to study difference sets in abelian groups was introduced
by Turyn in his seminal paper [55] and subsequently extended to RDSs:

Lemma 1.1

(i) The k-element subset D of an abelian group G of order v is a (v,k, A, n)-difference
set in G if and only if |x(D)| = /n for every nonprincipal character x of G.

(ii) The k-element subset R of an abelian group G of order mu containing a subgroup U of
order u is a (m,u,k,\) RDS in G relative to U if and only if for every nonprincipal
character x of G

Ix(R)| = vk if x nonprincipal on U
X N k —uX if x principal on U.

The existence of a subset D or R in Lemma 1.1 with the character properties described
forces the implicitly defined parameters n and A respectively to be integer. Lemma 1.1
indicates a general strategy for constructing difference sets and RDSs, namely to choose
a group subset for which all nonprincipal character sums have the correct modulus. In
Section 2 we show that the determination of character sums can be greatly facilitated by
selecting the group subset as a collection of “building blocks” which interact in a simple
way. This formalises many ideas which have been used implicitly in previous papers. At
the end of Section 2 we give an overview of the paper in terms of the concepts introduced.

2 Building sets

Many of the key ideas in this paper were developed from studying a construction due to
McFarland [42], and a modification given by Dillon [20], for difference sets with parameters
(2). The construction regards the elementary abelian group G of order ¢?*! as a vector
space P of dimension d + 1 over GF(q), where ¢ is a prime power. There are h =
qd;_ll_l subspaces Hy, Hy,...,Hp_1 of P of dimension d, called hyperplanes. Let G’ be
any group (not necessarily abelian) containing G as a central subgroup of index h +
1 and let gg,97,...9, € G' be coset representatives of G in G’. Then Uf;olggﬂi is a
McFarland difference set in G'. The construction can be viewed as depending crucially on
the following property: for any nonprincipal character of G there is exactly one hyperplane

H; having a nonzero character sum, and this nonzero character sum always has the same




modulus ¢¢. The difference set is comprised of h+ 1 subsets of G, namely the hyperplanes
together with the empty set. In the case when G’ is abelian, Lemma 1.1 (i) can be used
to verify that the construction produces a difference set, as follows. For characters of G’
which are nonprincipal on G, the required character sum modulus of \/n = ¢% is provided
by a contribution of ¢? from one subset and 0 from all the other subsets. For nonprincipal
characters of G’ which are principal on G, we shall see that the required character sum
modulus of ¢% follows easily as a consequence of the subset sizes.

A construction for semi-regular RDSs depending on the same property, in the case
d =1, is due to Davis [10]. Let G’ be any group (not necessarily abelian) containing G as
a central subgroup of index h — 1 = g and let g1, g5, ... g},_, be coset representatives of G
in G'. Then U?;llggﬂi is a (¢2,¢,¢%,q) semi-regular RDS in G’ relative to Hy. The RDS
is comprised of h— 1 subsets of G, namely h—1 of the h hyperplanes. In the case when G’
is abelian, Lemma 1.1 (ii) can be used to verify that the construction produces a RDS, as
follows. If a nonprincipal character x of G is principal on Hj then each subset provides a
contribution to the character sum modulus of 0, and if x is nonprincipal on Hy then one
subset contributes vk = ¢ and the rest contribute 0. This gives the required character
sum modulus for characters of G’ which are nonprincipal on G. For nonprincipal char-
acters of G’ which are principal on G, the required character sum modulus of 0 is again
a consequence of the subset sizes. [10] reports an observation of Pott’s that, in the case
d > 1, the same construction produces a (g(h — 1), q%,q%(h — 1),qd“(qd;;l),qd(q::ll))
semi-regular divisible difference set in G’ relative to Hy because of the mutual charac-
ter properties of the hyperplanes (see Jungnickel [28] for a definition and discussion of
divisible difference sets).

Motivated by these examples, we define a building block in a group G with modulus
m to be a subset of G such that all nonprincipal character sums over the subset have
modulus either 0 or m. Here and subsequently in the paper, all groups will be implicitly
assumed to be abelian unless otherwise stated. Some examples of building blocks are
a coset of a subgroup of GG, a semi-regular RDS in G relative to a subgroup U, and a
difference set in G. For integers a > 1 and ¢ > 1 we define a (a,m,t) building set (BS)
on a group G relative to a subgroup U to be a collection of ¢ building blocks in G with
modulus m, each containing a elements, such that for every nonprincipal character x of G

(i) exactly one building block has nonzero character sum if y is nonprincipal on U and

(ii) no building block has nonzero character sum if x is principal on U.

It follows immediately from Lemma 1.1 (ii) and the relationship between RDS parameters
that, for @ > 1, a (a,+/a,1) BS on a group G relative to a subgroup U of order u is
equivalent to a (a,u, a,a/u) semi-regular RDS in G relative to U. (A trivial (1,1,1) BS
is equivalent to a (1,u,1,0) RDS.)

We now show that a BS on a group G relative to a subgroup U can be used to construct
a BS on larger groups containing G as a subgroup. In particular we shall construct a
semi-regular RDS as a single building block on a group containing G.

Lemma 2.1 Suppose there exists a (a,/at,t) BS on a group G relative to a subgroup
U. Then there ezists a (as,vat,t/s) BS on G' relative to U, where s divides t and G' is
any group containing G as a subgroup of indezx s.
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Proof: Let {Bi, Bo,...,B;} be a (a,Vat,t) BS on G relative to U. For each j =
1,2,...,t/s define the subset R; = Uf_,9;B;(j_1)s of G', where g1,95,...,9; € G' are
coset representatives of G in G'. Let x be a nonprincipal character of G’ and consider
the character sum x(R;) = 371 x(9i)X(Bis+(j—1)s)- We distinguish three cases: x is
principal on G and nonprincipal on G’; x is principal on U and nonprincipal on G; and
x is nonprincipal on U. In the first case, when x is principal on G and nonprincipal
on G' (so s > 1), x(Bit(j—1)s) = |Bit(j—1)s| = a for each ordered pair (i,5) and so
X(Rj) = a> i1 x(g9;) = 0 for each j. The last equality uses the fact that x induces
a nonprincipal character on G'/G, and the associated character sum over this group is
0. In the second case, when x is principal on U and nonprincipal on G, by assumption
X(Bit(j—1)s) = 0 for each ordered pair (4,5) and so again x(R;) = 0 for each j. In the
third case, when x is nonprincipal on U, by assumption |x(B;4(j_1)s)| equals Vat for
exactly one ordered pair (4, j) (say (I,J)) and equals 0 for all other ordered pairs (3, j).
Therefore x(R7)| = [x(97)|[X(Br4(s-1)s)| = vat and [x(R;)| = 0 for each j # J.

The character sums for the three cases show that {R1, Ry, ..., Ry} is a (as, Vat,t/s)
BS on G’ relative to U. O

Note that, in the proof of Lemma 2.1, the building blocks B; can have non-empty
intersection but by definition no set R; contains repeated elements. We next show that
in the case s = t of Lemma 2.1 we can obtain a semi-regular RDS in G’ from a BS on G,
and we shall exploit this result in Section 8 to deduce the existence of semi-regular RDSs
from BSs.

Theorem 2.2 Suppose there ezists a (a,v/at,t) BS on a group G relative to a subgroup
U of order u, where at > 1. Then there ezists a (at,u,at,at/u) semi-regular RDS in G’
relative to U, where G' is any group containing G as a subgroup of index t.

Proof: Apply Lemma 2.1 with s =t to obtain a (at,v/at,1) BS on G’ relative to U.
For at > 1, this is equivalent to a (at,u, at,at/u) semi-regular RDS in G’ relative to U.
a

For example, the hyperplane construction of Davis [10] and Pott (reported in [10])
discussed at the beginning of this section can be interpreted as a (¢%,¢% h — 1) BS
{H1,Hs,...,Hy_1} on G relative to Hy, where G is the elementary abelian subgroup

of order ¢%*! and h = qd;_lf L
a (¢%,q,4¢?, q) semi-regular RDS in any group G’ containing G as a subgroup of index q.
We shall develop a powerful generalisation of this hyperplane construction in Section 4.

In this paper we consider only the case m = +/at of a (a,m,t) BS. We have given
the more general definition because of the apparent connection with divisible difference
sets. It seems that many other known constructions for divisible difference sets can be
analysed in terms of BSs.

A second example, due to Arasu and Sehgal [3], is a (8,4,2) BS on Z2 x Zy =
(r,y,2 | z* = y* = 22 = 1) relative to (2?,y?) = Z2, where the building blocks are
{1, 2, 22,222, 2%yz, vy, 232,42} and {1,23, 23y%2, 2292, yz, 2932, vy3, 2%y}. By Theo-
rem 2.2, this implies the existence of a (16,4,16,4) semi-regular RDS in each of the

By Theorem 2.2, the case d = 1 implies the existence of
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groups Zg x Z4 x Zo, 73, and Z3 x Z3 relative to a subgroup isomorphic to Z% contained
within two of the largest direct factors of the group.

Given a (a,Vat,t) BS {B1, By, ... B;} on a group G relative to a subgroup U of order u
we can find several constraints on the parameters a, ¢, u and |G|. Theorem 2.2 implies that
u | at for at > 1 (which derives from the condition that A be integer in Lemma 1.1 (ii)).
Theorem 2.2, together with the trivial case at = 1, also implies that |G| = ua. Further-
more we can show that ¢ | a(u — 1), as we now outline. Let G* be the group of characters
of G. For any building block Bi, 3\ co+ [X(Bi)I? = Xyeor Xgre; Zgoen: X(g1)x(g2) =
Sxeor Lgien; Lgnen; X(9192 1) = Lgien, Xyea x(16) = |Bil - |G| Therefore if w; is
the number of nonprincipal characters of G giving a nonzero character sum over B; then
a? + atw; = ua?, so that w; = a(u — 1)/t for all .

We have seen how to construct a semi-regular RDS from a BS. We now define a
modification of a BS for the purpose of constructing difference sets in an analogous way.
For integers a > 0, m > 1, and h > 1, we define a (a, m, h, +) ezxtended building set (EBS)
on a group G with respect to a subgroup U to be a collection of A building blocks in G
with modulus m, of which A — 1 contain @ elements and one contains ¢ 4+ m elements,
such that for every nonprincipal character y of G

(i) exactly one building block has nonzero character sum if  is principal on U and
(ii) no building block has nonzero character sum if x is nonprincipal on U.

We define a (a,m, h, —) EBS on G with respect to U in the same way, with a+m replaced
by a — m. We shall treat both cases simultaneously by referring to a (a,m,h,+) EBS.
Notice that the role of principal and nonprincipal characters on U is the reverse of that
used in the definition of a BS. Notice also that for a EBS we must have m integer, because
one building block contains a £ m elements, whereas for a BS m need not be integer. We
call the EBS covering in the case U = {1}, when exactly one building block has nonzero
character sum for every nonprincipal character of G. (The use of “covering” refers not
to the intersection or union of the building blocks but to their character properties.) It
follows immediately from Lemma 1.1 (i) that a (a,m,1,+) covering EBS on a group G
is equivalent to a (|G|, a £ m,a + m — m?, m?)-difference set in G.

We now show that a covering EBS on a group G can be used to construct a covering
EBS on larger groups containing G as a subgroup. In particular we shall construct a
difference set as a single building block on a group containing G. We shall exploit this
result in Section 5 to deduce the existence of difference sets from covering EBSs.

Lemma 2.3 Suppose there ezists a (a,m,h,+£) covering EBS on a group G. Then there
exists a (as,m,h/s,x) covering EBS on G', where s divides h and G' is any group
containing G as a subgroup of indez s.

Proof: The proof is modelled on that of Lemma 2.1. Let {Bi,Bs,...,By} be a
(a,m, h,x) covering EBS on G and let the building block containing a+m elements be Bj.
Foreach j = 1,2,...,h/s let D; be the subset Uj_,g;B; (j_1)s of G', where g}, 95, ..., €
G' are coset representatives of G in G'. If x is a principal character of G and non-
principal on G’ (s0 h > 1) then x(D;) = x(g})|Brs 1yl + Sios x(0) Brs ol =
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X8 (Bl — @)+ a8y x(01) = x(65)(|Brs—1| — @), because the character in-
duced by x on G'/G is nonprincipal. Therefore |x(D;)| equals m for j = 1 and equals
0 for all j > 1. If x is a nonprincipal character of G then by assumption |x(B;(j—1)s)|
equals m for exactly one ordered pair (i, j) and equals 0 for all other ordered pairs (3, j).
Therefore |x(D;)| equals m for exactly one value of j and equals 0 for all other values of
g.

Combining these two cases, {D1, Da, ..., Dy} is a (as,m,h/s, %) covering EBS on
G'. 0O

Theorem 2.4 Suppose there exists a (a,m,h,x) covering EBS on a group G. Then
there exists a (h|G|,ah £ m,ah £ m — m?, m?)-difference set in any group G' containing
G as a subgroup of index h.

Proof: Apply Lemma 2.3 with s = h to obtain a (ah,m,1,+) covering EBS on G’.
This is equivalent to a (h|G|,ah + m,ah + m — m? m?)-difference set in G'. O

For example, the hyperplane construction of McFarland [42] and Dillon [20] discussed

at the beginning of this section can be interpreted as a (¢%,¢% h + 1,—) covering EBS
gt 1

qg—1
By Theorem 2.4, this implies the existence of a McFarland difference set in any group G’

containing G as a subgroup of index h + 1.

We have already given an example of a (8,4,2) BS {Bi, Bo} on 72 x Zy = (z,y, 2 |
zt =yt = 22 = 1) relative to (z%,y%) = Z3, due to Arasu and Sehgal [3]. If we define
a third building block Bs = (x?,4?) then {B1, By, B3} is a (8,4,3,—) covering EBS and
then by Theorem 2.4 there exists a (96, 20,4, 16)-difference set in Z2 x Zy x Z3z. The
main purpose of [3] was to demonstrate the existence of such a difference set, but the
embedded (8,4,2) BS will be of great use in the construction of families of difference sets
and semi-regular RDSs in later sections.

We now derive some constraints on the parameters a, m, h and |G| of a (a,m, h, £)
covering EBS on a group G. The relationship between difference set parameters (v, k, A\, n)
can be written as k2—n = Av, so from Theorem 2.4 we find a(ah+2m) = (ah+m—m?)|G|.
Provided A = ah & m —m? > 0, this implies that ah & m — m? divides a(ah & 2m). (The
exceptional case A = 0 corresponds to k = 1, namely a trivial (0,1,h,+) or (2,1,1,—)
or (1,1,2,—) covering EBS on G.) Let the covering EBS be {Bi, By, ..., B} and let By
be the building block containing a + m elements. By the same argument as previously
used for a BS, 3, ¢+ |X(Bi)|* = |Bi| - |G|. Therefore if w; is the number of nonprincipal
characters of G giving a nonzero character sum over B; then a? + m?w; = a|G| for all
i > 1 and (a £ m)? + m?w; = (a £ m)|G|, so that w; = a(|G| — a)/m? for all i > 1 and
wy = a(|G| — a)/m? — 1 £ (|G| — 2a)/m. It follows that, for A > 1, m divides |G| and
m | a.

Notice that we can construct a difference set or RDS by fixing one building block at
a time. The character properties of the building blocks already fixed do not change as
further building blocks are determined. This is an important advantage over the binary
array viewpoint, in which we must consider the cross-correlation of a new array with each
of those previously fixed.

{¢,Hy, Hy,...,Hp_1} on the elementary abelian group G of order ¢**!, where h =
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The remainder of the paper is concerned with describing and applying constructions
for covering EBSs and BSs. In Section 3 we give a recursive construction for covering EBSs
which assumes the existence of certain families of BSs. These families are provided by a
recursive construction for BSs presented in Section 4. We shall illustrate the constructions
of Sections 3 and 4 by reference to (16,8,5,+) covering EBSs on groups of order 64 and
(32,16,11, —) covering EBSs on groups of order 128, which by Theorem 2.4 produce
difference sets with parameters (320, 88,24, 64) and (1408, 336, 80, 256) respectively. In
Sections 5 and 6 we apply the recursive constructions and use Theorem 2.4 to provide a
unifying framework for difference sets in the McFarland, Spence and Hadamard parameter
families as well as the new parameter family (4). Section 5 deals with BSs on p-groups
only, whereas Section 6 uses BSs on groups whose order need not be a prime power. In
Section 7 we show that the construction of Section 4 is sufficiently strong to provide many
further existence results for families of BSs. From Theorem 2.2 we deduce the existence
of several families of semi-regular RDSs in Section 8 and provide a unifying framework
for many previously known results on RDSs. We conclude in Section 9 with a selection
of open problems and a discussion of how the definitions and constructions of this paper
might be generalised to deal with nonabelian groups.

3 Recursive construction of extended building sets

In this section we give a recursive construction for covering EBSs. By Theorem 2.4, this
central result implies a recursive construction for difference sets, which is the unifying
construction of the title of the paper.

We shall construct a covering EBS on a group G as the multiset union of two collections
of building blocks. The first collection will be a (uam, um, h, +) EBS on G with respect to
a subgroup U of order u. By the definition of EBS, the nonprincipal characters of G giving
a nonzero character sum on these building blocks are precisely those which are principal
on U. The second collection will be a (uam,um,t) BS on G relative to U, where um = at
(so the BS parameters can equivalently be written as (a®t,at,t).) By the definition of
BS, the nonprincipal characters of G giving a nonzero character sum on these building
blocks are precisely those which are nonprincipal on U. Moreover, since each building
block of a BS or EBS has nonzero character sum for at most one nonprincipal character,
the multiset union of these two collections will be a (uam,um, h +t,+) covering EBS on
G. In this way we shall combine the favourable properties of the two collections of blocks
without introducing unwanted interactions between them.

We can fix |G| = u?am from the relationship between BS parameters given after
Theorem 2.2. By Theorem 2.2, the second collection of building blocks can be viewed as
a special form of (u?m?, u, u?>m?,u?m) semi-regular RDS relative to U in a group having
G as a subgroup of index ¢. To form the first collection of building blocks we begin with
a covering (am,m,h,+) EBS on the quotient group G /U, which by Theorem 2.4 can
be viewed as a special form of (uamh, m(ah &+ 1), m(ah + 1 — m), m?)-difference set in a
group having G/U as a subgroup of index h. We now show how to take u copies of this
covering EBS on G/U to produce a EBS on G with respect to U, as required for the first
collection of building blocks.

11



Lemma 3.1 Suppose there ezists a (am, m,h,x) covering EBS on a group G /U, where
U is a subgroup of G of order u. Then there ezxists a (uam,um,h,+) EBS on G with
respect to U.

Proof: Let {B], B, ..., B} } be a (am, m, h,+) covering EBS on G/U. For each j let
Bj ={g € G| gU € Bj} be the pre-image of B} under the quotient mapping from G to
G/U. Since Bj is the union of |B}| distinct cosets of U, it follows both that |B;| = u| B}
and that for every nonprincipal character x of G

(B;) = 0 if x nonprincipal on U
X\Pj) = up(Bj) if x principal on U,
where 1 is the nonprincipal character induced by x on G/U. By the definition of cov-
ering EBS, ¢(B}) is nonzero (having modulus m) for exactly one value of j. Therefore
{B1,Bs,...,By} is a (uam,um, h,£) EBS on G with respect to U. O

We can now construct a covering EBS on G from two ingredients: a covering EBS
on G/U (a special form of difference set) and a BS on G relative to U (a special form of
semi-regular RDS). The following theorem is the key construction of the paper.

Theorem 3.2 Let G be a group of order u?am containing a subgroup U of order wu.
Suppose there exists a (am,m,h,+) covering EBS on G/U and there ezists a (a’t,at,t)
BS on G relative to U, where um = at. Then there exists a (uam,um,h +t,+) covering
EBS on G.

Proof: By Lemma 3.1 the existence of a (am, m, h, £) covering EBS on G/U implies
the existence of a (uam,um,h,+) EBS, say {B1, Bo,..., By}, on G with respect to U.
By assumption there exists a (a’t,at,t) BS, say {Bpi1, Bhi2,---,Bhyit}, on G relative
to U. Since um = at the parameters of the BS can be written as (uam,um,t). By the
definitions of EBS and BS, this implies that {B1, By,..., By} is a (vam,um,h +t,+)
covering EBS on G. O

By applying the relationship between covering EBS parameters given after Theo-
rem 2.4 to G/U, we find the parameters of Theorem 3.2 are constrained by am(amh +
2m) = (amh +m — m?)|G/U|, which reduces to ah(u — 1) = mu F (u — 2).

For example, let G be the group 73 x Zo, Z4 x Z3, or Z3. In each case G contains a
subgroup U = 72 such that G /U = Z3. Now there exists a trivial (2,1, 1, —) covering EBS
{B!} on Z3, comprising just the identity element. Following the proof of Lemma 3.1, set
By ={g€ G| gU € Bi} =U. Assume we can find a (8,4,2) BS {By, B3} on G relative
to U. (Section 2 contains an example of such a BS for the case G = Z2 x Z,.) Then by
Theorem 3.2, {B1, B2, Bs} is a (8,4,3,—) covering EBS on G and by Theorem 2.4 there
exists a (96,20, 4, 16)-difference set in G x Zs.

In the above example Bj is a subgroup of G, but this need not be the case. Take G to
be the group 73 x 73, Z4xZ3, or Z§ and let U = Z2 be a subgroup of G such that G/U = Z3.
Now we have seen in Section 1 that Z5 contains a (16, 6, 2, 4)-difference set, which can be
viewed as a (4,2,1,+) covering EBS {B!} on Z3. Again set B; = {g € G | gU € Bj},
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which is not a subgroup of G. Assume we can find a (16,8,4) BS {By, B3, B4, B5} on G
relative to U. Then by Theorem 3.2, { By, B, B3, B4, Bs} is a (16,8,5,+) covering EBS
on G and by Theorem 2.4 there exists a (320, 88,24, 64)-difference set in G x Zs. These
difference set parameters belong to the new family (4) with d = 1, for which no examples
of difference sets were previously known.

As a further example, we show that the covering EBS on G/U can comprise more
than one building block. Take G to be any group of order 128 and exponent at most
4, and let U =2 7% be a subgroup of G such that G/U is isomorphic to Z4 x Z3§ or Z3.
From the first example above, there is a (8,4,3,—) covering EBS on G/U. Assume we
can find a (32,16,8) BS on G relative to U. Then there exists a (32,16,11,—) covering
EBS on G and therefore a (1408, 336, 80, 256)-difference set in G x Z11. These difference
set parameters belong to the McFarland family with ¢ = 4 and d = 2, for which the
only abelian groups previously known to contain difference sets were Z% x Z11 [42] and
Z4 X Zg X Z11 [20]

We shall show in Section 4 how to construct the BSs whose existence was assumed
in the above examples. Following the pattern indicated by the examples, we now apply
Theorem 3.2 recursively to large classes of groups, assuming for now that the required
BSs are available.

Theorem 3.3 Let p be prime, let r > 1, and for each d > 0 let G4 be a set of groups
of order pl%t U qm. Suppose there exists a (am, m, h,x) covering EBS on each Gy € Gp.
Suppose also that, for each d > 1, there exists a (p(dfl)rcﬂt,p(dfl)Tat,p(dfl)Tt) BS on
each G4 € Gy relative to a subgroup Uy (depending on Gg) of order p", where p"m = at
and where G4_1 contains a group isomorphic to G4/Uy. Then for each d > 0 there exists
a (p¥am,p™m,h + ’%t, +) covering EBS on each G4 € Gg4.

Proof: The proof is by induction on d. The case d = 0 is true by assumption.
Assume the case d — 1 to be true. For each G; € G4, by assumption there exists a
(p(d_l)TGQt,p(d_l)Tat,p(d_l)rt) BS on Gy relative to a subgroup Ug. Since G471 contains
a group isomorphic to G4/Uy (of order p®am), by the inductive hypothesis there ex-

ists a (p(& Vram, pl@rm, h + Z%t, +) covering EBS on G;4/U,. It follows from

Theorem 3.2 that the case d is true, completing the induction. O

When applying the recursive construction for covering EBSs of Theorem 3.3 we shall
usually take G4 to be the set of all p-groups of order @7 gm with bounded exponent
(independent of d). The condition that G; 1 contains a group isomorphic to G4/Uy will
then automatically be satisfied. In order to apply this theorem we require suitable families
of BSs. We shall show how to obtain these in Section 4 by means of a second recursive
construction. In Section 5 we shall deduce the existence of families of covering EBSs
which, by Theorem 2.4, implies the existence of families of difference sets. In Section 6
we shall use a similar procedure to construct difference sets with parameters from the
Hadamard family (1), applying Theorem 3.2 directly instead of Theorem 3.3.
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4 Recursive construction of building sets

In this section we give a recursive construction for BSs relative to an elementary abelian
subgroup. This will be used to provide the families of BSs needed for both the construction
of difference sets in Sections 5 and 6 and for the construction of semi-regular RDSs in
Section 8.

The construction depends on a vector space P of dimension 2 over GF(p"). Let ¢
be a multiplicative generator of GF(p"). We can write the additive group of GF(p")
as (6 | 0 < 4 < r—1) and so P is an additive group which can be written as
((6",0),(0,67) | 0 < i,j < r—1). We construct an isomorphism from P to 72" =
(z1,22,...,Tr,Y1,Y2,-- -, Yr) by (0°,0) = z;11 and (0,6?) — y;41. The subspaces of P
of dimension 1 (the hyperplanes) Hy, Hi,..., H,r each contain p” elements and have as

their bases {(1,0)},{(0, 1)}, {(1, 1)}, {(6, 1)}, {(62, 1)}, {(63,1)},..., {(6" ~2,1)}.

Lemma 4.1 Let P be a vector space of dimension 2 over GF(p"), where p is prime. Any
nonprincipal character of P is principal on ezactly one of the hyperplanes of P.

Proof: We show firstly that the kernels of the nonprincipal characters x of P are
precisely the subgroups of P of order p?"~!. Since  is a homomorphism from P onto the
p'"' roots of unity, [Ker(x)| = |P|/p = p*"~! and so Ker() is a subgroup of P of order
p?" 1. Furthermore any subgroup of P of order p?" ! is the kernel of some nonprincipal
character of P.

We next show that a subgroup of P of order p?"~! contains at most one hyperplane.
P is a vector space of dimension 2 over GF(p") and each hyperplane is a subspace of
dimension 1. Hence two distinct hyperplanes intersect in a subspace of dimension 0: the
identity element. Therefore the product of two distinct hyperplanes is the whole of P, so
a subgroup of order p?"~! cannot contain two distinct hyperplanes.

Finally we use a counting argument to show that a subgroup of P of order p?"—
contains exactly one hyperplane. Let H; be a hyperplane for some ¢ = 0,1,...,p". Since
P = fo we have P/H; = Z;. Therefore P/H; contains (p" — 1)/(p — 1) subgroups of
order p" 1. Each such subgroup of P/H; is associated with a subgroup of P of order
p?" 1 containing H;, using the quotient mapping from P to P/H;. Therefore there are at
least (p" — 1)/(p — 1) distinct subgroups of P of order p?" ! containing H;. Since i can
take p” + 1 values, there are at least (p” +1)(p" — 1)/(p — 1) = (p?" — 1)/(p — 1) distinct
subgroups of P of order p?"~! containing some hyperplane (since we have already shown
that the subgroups of P arising from different values of 7 must be distinct). But the total
number of subgroups of P of order p?"~! is (p?" — 1)/(p — 1) and so every subgroup of P
of order p?" ! contains exactly one hyperplane.

We have now shown that for any nonprincipal character x of P, Ker(x) contains
exactly one hyperplane of P. This completes the proof. O

1

1

Lemma 4.1 implies the following result, due to Davis [10], which was discussed when
introducing building sets in Section 2.

Corollary 4.2 There ezists a (p",p",p") BS on er relative to Zy, where p is prime and
r>1.
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Proof: Let Hy, Hy,...,Hy be the subgroups of ZIQ,T of order p” corresponding to hyper-
planes of P under the isomorphism from fo to P. Label the subgroups so that Hy = Zy,.
Then Lemma 4.1 implies that {H1, Hs,...,Hpr} isa (p",p",p") BS on ZIZ,’" relative to Z,.
O

We now show how to exploit the hyperplane structure of Lemma 4.1 to obtain a more

general result than Corollary 4.2. Take a group G containing a subgroup () isomorphic to
Z?f and consider those subgroups H; of G which correspond to hyperplanes when viewed
as subgroups of ). We show that if there exists a BS on G/H; relative to QQ/H; for
i =1,2,...,p" then each BS can be “lifted” from the quotient group G/H; to G (in a
similar manner to the lifting of a covering EBS in Lemma 3.1) to collectively form a BS
on G relative to Hy.
Theorem 4.3 Let G be a group of order p°"a containing a subgroup Q = ZZ’" , where p is
prime. Let Ho, Hy,...,Hyr be the subgroups of G of order p” corresponding to hyperplanes
when viewed as subgroups of Q. Suppose there exists a (a,/at,t) BS on G/H; relative to
Q/H; for each i =1,2,...,p". Then there exists a (p"a,p"at,p"t) BS on G relative to
Hy.

Proof: For each i > 1, let {B}, Bly,..., B!} be a (a,Vat,t) BS on G/H; relative to
Q/H;. Following the proof of Lemma 3.1, for each ¢ > 1 and for each j let B;; = {g €
G | gH; € Bj;}. Since Bjj is the union of |Bj;| = a distinct cosets of Hj, |B;j| = p"a and
for every nonprincipal character y of G and for each ¢ > 1 and for each j

V)0 if x nonprincipal on H;
X(Bij) = { p"(Bj;) if x principal on Hj, (5)

where (B;;) is the nonprincipal character induced by x on G/H;. By the definition of
BS, for each i > 1, 9(Bj;) is nonzero (having modulus Vat) for exactly one value of j if
1 is nonprincipal on @/H;, and is nonzero for no value of j if ¢ is principal on Q/H;.

We claim that {B;; | 1 < i < p",1 < j < t}, comprising p"t subsets B;; of G, is
a (p"a,p"Vat,p"t) BS on G relative to Hy. To establish this, let ¥ be a nonprincipal
character of G. Lemma 4.1 implies that if y is nonprincipal on @ then it is principal
on one of the subgroups H; and nonprincipal on all the others. We therefore distinguish
three cases: y is principal on Hy for some I # 0 and nonprincipal on H; for each i # I;
x is principal on Hy and nonprincipal on H; for each ¢ # 0; and x is principal on () and
nonprincipal on G.

In the first case, where  is principal on Hy for some I # 0 and nonprincipal on H;
for each i # I, x(Bj;) = 0 for each i # I and x(By;) = p"(B};), from (5). Since x is
nonprincipal on @, 4 is nonprincipal on Q/H; and so 4)(B};) is nonzero (having modulus
Vat) for exactly one value of j. Therefore x(B;;) is nonzero (having modulus p"v/at)
for exactly one ordered pair (i,7). In the second case, where x is principal on Hj and
nonprincipal on H; for each ¢ # 0, x(B;;) = 0 for each ordered pair (i, ), from (5). In
the third case, where x is principal on ) and nonprincipal on G, x is principal on H; for
each 7 > 0. Therefore x(B;;) = p"1(B;;) for each i > 1, from (5). Since 9 is principal on
Q/Hi, ¢(Bj;) = 0 for each ordered pair (i, ).
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The results for the three cases establish the claim. O

Given a group G and a subgroup Hy = Zj on which we wish to construct a BS
using Theorem 4.3, we are free to choose () to be any subgroup of G isomorphic to Z?f
containing Hy. This choice will determine the subgroups H; # Hj of G corresponding to
hyperplanes. By suitable choice of generators of G we can assume that () is contained in
2r direct factors of G and that any one particular hyperplane H; is contained in r of these
direct factors. Then the proof of Theorem 4.3 describes a procedure for constructing the
BS explicitly. Given a BS on each of the p” quotient groups G/H; relative to Q/H;, we
lift each BS from G/H; to G by taking B;; = {g € G | gH; € Bj;}. This produces the
p"t building blocks of a (p"a,p"/at,p"t) BS on G relative to H,.

To illustrate this procedure in detail, suppose we wish to construct a (32,16,8) BS
on G =73 x 7y = (z,y,z,w | z* = y* = 2* = w? = 1) relative to Hy = (z?,9?) = 73.
We firstly choose the subgroup Q = Z3 of G to be (x2,4?, 2%, w), which contains Hj.
We next determine the subgroups of G corresponding to hyperplanes, by reference to
the multiplicative structure of GF(4). Since 22 + z + 1 is an irreducible polynomial of
degree 2 over GF(2) we can regard GF(4) as having multiplicative generator ¢, where
62 = § + 1. Then the hyperplanes of GF(4)? are {(1,0)), {(0,1)), {(1,1)), {(6,1)) and
((6 + 1,1)). Define the isomorphism from GF(4)? to Q by (1,0) — 22, (§,0) — %2,
(0,1) + 22 and (0,6) — w. The subgroups of G corresponding to the hyperplanes are
then respectively Hy = (22,92), Hy = (z%,w), Hy = (2222,y%w), H3 = (4?22, 2%y%w)
and Hy = (z2y%22%,2%w). For each i # 0 we now form the quotient group G/H; and its
associated subgroup @Q/H;. In this case we find that G/H; = 72 x Zy, and Q/H; = 73 is
contained within Z2, for each i # 0. We therefore require a (8,4,2) BS on (a,b,c | a* =
b* = ¢?) relative to (a?,b%). An example of such a BS was given in Section 2, comprising
the group ring elements

Bi(a,b,c) = 1+a+ac+a’c+a’be+ab+ab’c+b?,
Bh(a,b,c) = 1+a®+ a®b’c+ a®b’c+ be+ ab’c + ab® + a®b.

In order to construct the BS on G we write each quotient group G/H; explicitly in
terms of its generators. We find G/H, = (zHy,yH1,zH,), G/Hy = (xHy,yH,,z2zH>),
G/H3 = (xHs,yHs,yzHs) and G/Hys = (rH,yH4,zyzH,), the first two generators
having order 4 and the third generator having order 2 in each case. We also find Q/H; =
(x?H;,y*H;) for each i # 0. Therefore a (8,4,2) BS in G/H; relative to Q/H; is given
by the building blocks Bj; and Bj, where for j = 1,2 we have B{; = Bj(z,y,2)Hq,
By; = Bj(z,y,22)Ha, By; = Bi(z,y,yz)H; and Bj; = Bé(x,y,xyz)ﬂ?;. For example,
B, = Hy + zHy + 222Hy + 232Hy + x3yzHy + vyHo + 2?y32Ho + y>Hy. Each of the
expressions Bj; is a group ring element in Z[G//H;] comprising 8 elements of the quotient
group G/H;. We finally obtain B;; = {g € G | gH; € Bj;} by regarding the formal
expression for Bj; as a group ring element in Z[G] comprising 32 elements of G. The 8
building blocks {B;; | 1 <i < 4,1 < j < 2} then form a (32,16,8) BS on G relative to
H,.

In general the quotient groups G/H; for i # 0 need not be isomorphic. For example,
let G = Zo x Zy = (z,y | 2 = y* = 1). The subgroups of G corresponding to hyperplanes
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are Hy = (z), Hi = (y?) and Hy = (zy?), so the quotient groups G/H; = Z3 and
G/Hs = 7,4 are not isomorphic. (Since there exists a (2,2,2) BS on Z32 relative to Zso
but not on Z4 relative to Zz, we cannot use Theorem 4.3 to construct a (4,4,4) BS on
G relative to Hy.) This example also demonstrates (for i = 2) that the direct factors of
G containing Hy do not necessarily correspond to the direct factors of G/H; containing
Q/H;.

Clearly we require some information about the form of G/H; and Q/H; in order to
apply Theorem 4.3 effectively. We now show that by appropriate choice of generators,
exactly r direct factors of G retain the same exponent in G/H; (these are the direct
factors which contain @/H;) and r are reduced by a factor of p.

Lemma 4.4 Let G be the group Hiil Zipitew containing a subgroup @ = Z?f, where p is

prime and o, > 0. Let Ho, Hy,...,Hy be the subgroups of G of order p" corresponding
to hyperplanes when viewed as subgroups of Q. Then for each H; there exists a r-element
subset S of {1,2,...,2r} such that G/H; = [],g5 Zpt+au X [1ycs Zpou . Moreover, for each
H; a suitable choice of generators of G ensures that Q/H; = 7;, is contained in the first
r direct factors of G/H; as specified. Furthermore if Hy is contained in a subgroup of
G isomorphic to Z;JQ then, for each H; # Hy, Q/H; is contained in a subgroup of G/H;
isomorphic to Z;2.

Proof: Each H; is a subgroup of @ of order p" and so H; = Z;. Therefore we
can choose generators of G such that H; is contained in r direct factors of G. Let
{z, | 1 < u < 2r} be the generators of G, where 22" ™" = 1 for all u, and let S be the
r-element subset of {1,2,...,2r} which indexes the r direct factors containing H;. Then
H; = (" | u € S), and the order of z, H; in G/H; is p't® for u ¢ S and p®« for u € S.
Therefore G/H; = (z,H; | 1 < u < 2r) = [[,g6 Zpttaw X [[yes Zpou as required. With
this choice of generators, Q/H; = (zP""H; | 1 < u < 2r) = («zP""H; | u ¢ S), and so
Q/H; = Zj, and Q/H; is contained in the first r direct factors of G/ H; as specified.

Suppose now that Hy is contained in a subgroup of G isomorphic to Z;z. Since Hy
is isomorphic to Zj, this is equivalent to the statement that each hg € Hy can be written
as hg = ¢P for some g € G. For any H; # Hy let gH; be an element of QQ/H;. The
proof of Lemma, 4.1 shows that Q = HoH; and so ¢ = hgh; for some hy € Hy and some
h; € H;. Since hg = gP for some g € G we obtain ¢H; = g?h;H; = ¢’ H; = (gH;)?, and so
Q/H; = 77, is contained in a subgroup of G/H; isomorphic to Z;z. O

For example, we can now construct the BSs whose existence we assumed in Section 3.
We firstly show there exists a (8,4,2) BS on each of the groups Z? x Z, Z4 x Z3 and
735 relative to a subgroup U = Z32 contained within two of the largest direct factors of
the group. The group Z? x Zs is dealt with by the example in Section 2. For the other
two groups, by Corollary 4.2 there is a (4,4,4) BS on Z5 relative to Z3, from which the
desired BS can be obtained using Lemma 2.1 with s = 2. An example in Section 3 then
shows that there is a (96,20,4,16) McFarland difference set in any group of order 96
whose Sylow 2-subgroup has exponent at most 4.

Next we show there exists a (32,16,8) BS on any group G of order 128 and exponent
at most 4 relative to a subgroup U = Z2 contained within two of the largest direct factors
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of G. Let Q = Z3 be a subgroup of G containing Hy = U. By Lemma, 4.4, for each
H; # Hy, we find G/ H; has order 32 and exponent at most 4 and Q/H; = 72 is contained
in two of the largest direct factors of G/H;. By the preceding example there is a (8,4, 2)
BS on G/ H; relative to Q/H; and so by Theorem 4.3 we obtain the desired BS on G. An
example in Section 3 then shows that there is a (1408, 336, 80, 256) McFarland difference
set in any group of order 1408 whose Sylow 2-subgroup has exponent at most 4. The
above procedure indicates the recursive construction for McFarland difference sets which
we shall present in Section 5.

As a further example, we show there exists a (16, 8,4) BS on each of the groups 72 x 73,
Z4 x 73 and Z$ relative to a subgroup U 22 Z2 contained within two of the largest direct
factors of the group. We firstly consider the group Z37 x Z3. Now Jungnickel [28] has
shown that {1, z,y,z%y®} is a (4,4,4,1) semi-regular RDS in Z2 = (z,y | z* = y* = 1)
relative to (z2,4%) = Z2. Since this is equivalent to a (4,2,1) BS on Z? relative to Z2, we
obtain the required BS by Theorem 4.3 and Lemma 4.4. We cannot deal with the groups
Z4 x Z3 and Z3 in the same way because this would require a (4, 4,4,1) semi-regular RDS
on Zy x 73 or 74 relative to U = Z2, which does not exist [24]. But from Corollary 4.2
there is a (8,8,8) BS on Z$ relative to Z3. We show in the following lemma how this can
be used to provide a (8,8,8) BS on Z3 relative to Z3, which allows the required BS to be
constructed using Lemma 2.1 with s = 2. An example in Section 3 then shows that there
is a (320, 88,24, 64)-difference set in 72 x Z2 x Zs, Z4 x Z4 x Zs and Z$ x Zs. Although
the group Z3 x Zs has order 320 and exponent 4 it is excluded from this result because 7
does not contain a subgroup @ = Z3 and so Theorem 4.3 cannot be applied. In Section 5
we present a recursive construction for difference sets with parameters (4) based on these
initial examples, and show that the exceptional case Z3 x Zs does not propagate to larger
groups under this construction.

We now describe the method of “contraction” of BSs required in the preceding exam-
ple, modelled on that given by Elliott and Butson [21] for RDSs.

Lemma 4.5 Suppose there exists a (a,/at,t) BS on a group G relative to a subgroup U.
Let W be a subgroup of U. Then there ezists a (a,/at,t) BS on G/W relative to U/W .

Proof: Let {B1,Bsy...,B;} be a (a,v/at,t) BS on G relative to U. Let B; = {gU €
G/U | g € B;} be the image of B; under the quotient mapping from G to G/U and let
B;-’ = {gW € G/W | g € B;} be the image of B; under the quotient mapping from G to
G/W.

We show firstly that for each j, B; = G/U in the group ring Z[G/U]. Every non-
principal character ¥ of G/U can be regarded as being induced by a character x that
is nonprincipal on G and principal on U, so that ¢(B}) = x(B;) = 0 by the definition
of BS. Therefore B} = ¢G/U in Z|G/U] for some integer c. Now |B;| = a by the defi-
nition of BS, and |G|/|U| = a from the relationship between BS parameters given after
Theorem 2.2, so that ¢ = 1.

We next show that for each j, B} contains no repeated elements. Since B = G/U
in Z[G /U], each coset of U in G contains exactly one element of B;. It follows that each
coset of W in G contains at most one element of B;.

Finally we show that {BY}, By ..., B/} is a (a,V/at,t) BS on G/W relative to U/W.
For each j, we have shown that B;' is a subset of G/W comprising a elements. Every
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nonprincipal character ¢ of G/W can be regarded as being induced by a character x that
is nonprincipal on G and principal on W, so that ¢(B7) = x(B;). If x is nonprincipal
on U, so that ¢ is nonprincipal on U/W, then x(B;) is nonzero (having modulus v/at)
for exactly one j, by the definition of BS. If x is principal on U, so that ¢ is principal on
U/W, then x(B;) = 0 for each j, by the definition of BS. This completes the proof. O

We shall defer until Section 7 a full examination of the consequences of Theorem 4.3
for constructing families of BSs. For now our goal is to obtain quickly and easily just the
BSs required for the construction of difference sets using Theorems 2.4 and 3.3. In this
spirit we now give a recursive application of Theorem 4.3 to large classes of groups, which
will be generalised in Section 7. While it was not important in Theorem 3.3 to keep track
of the subgroup U associated with the BS on the group G, here we specify ordered pairs
(G,U) to assist in applying Theorem 4.3 recursively.

Theorem 4.6 Let p be prime, let v > 1, and for each d > 1 let Ky be a set of ordered
pairs (Gq,Uy), where Gq is a group of order po a containing a subgroup Uy =2 Zy,. Suppose
that for each (G1,U1) € K1 there ezists a (a,v/at,t) BS on Gy relative to Uy. Suppose
also that, for each d > 1 and for each (Gq,Uy) € Kq, G4 contains a subgroup @ = Z;’"
and subgroups Hy, Hy, ... Hy of order p™ (corresponding to hyperplanes when viewed as
subgroups of Q), where Hy = Uy and where Kq_1 contains an ordered pair isomorphic to
(G4/H;,Q/H;) for each H; # Hy. Then for each d > 1 and for each (G4,Uy) € Ky there
exists a (%D a, pld=r/at, pld=1rt) BS on Gy relative to Uy.

Proof: The proof is by induction on d. The case d = 1 is true by assumption.
Assume the case d — 1 to be true and consider H; # Hy. Since K; 1 contains an
ordered pair isomorphic to (Gy4/H;, Q/H;), by the inductive hypothesis there exists a
(pld=2rq, pld=2\ /4 pld=2r¢) BS on G4/ H; relative to Q/H;. It follows from Theo-
rem 4.3 that the case d is true, completing the induction. O

In Section 5 we shall apply Theorem 4.6, usually taking K; to be the set of all
ordered pairs (Ggq,U,) for which Gy is a p-group of order p¥a with bounded exponent
(independent of d), and for which Uy = Zj is contained in r of the largest direct factors
of G4. This will allow the construction of difference sets with parameters from the
families (2), (3) and (4). In Section 6 we shall present a different recursive application of
Theorem 4.3 for the construction of difference sets with parameters from the Hadamard
family (1).

5 Application to difference sets

In this section we use the recursive construction of Theorem 4.6 to obtain families of BSs
on p-groups, from which the recursive construction of Theorem 3.3 produces families of
covering EBSs on p-groups. Using Theorem 2.4 we deduce the existence of difference sets
with parameters from the McFarland family, the Spence family, and the new parameter
family (4).
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We firstly show that by restricting the BSs to be on p-groups, the resulting difference
set parameters must belong to the Hadamard family (1), the McFarland family (2),
the Spence family (3), or the new family (4). By Theorem 2.4, the construction of
Theorem 3.2 can be viewed as using an initial difference set (based on the covering EBS
on G/U) to produce a final difference set (based on the covering EBS on G). We now
examine the parameters u, a, m, t and h of Theorem 3.2 in more detail. By assumption G
is a p-group of order u?am, so u and m are powers of the prime p. Let u = p", and write
m = pld=1r+e for gome d > 1 and 0 < & < . The assumption um = at of Theorem 3.2

can then be written as at = p% 2, and the parameter relationship ah(u—1) = mu=F(u—2)
_ pdr+a:|:1
=2

following the Theorem can be written as ah F 1. The last equality implies that

p" — 1 divides p7te £ 1 = (p~ — 1)(pld-Urte  pld=2r+te 1 4 5oy 4 5o 41 and so
p" — 1 divides p® £+ 1 for some « satisfying 0 < a < r. This condition only holds in three
cases: with the lower sign and a = 0; with the upper sign and a« = 0, p = 3 and r = 1;
and with the upper sign and o = 1, p = 2 and r = 2. In each case the values of u, m, at
and ah fix the parameters of the initial and final difference set.

In the first case, with the lower sign and o = 0, we have u = p", m = pld=1r gt = pdr
dr
and ah = B ,__11 + 1. Theorem 2.4 then gives the parameters of both difference sets as

being from the McFarland family, the initial with the values ¢ = p” and d — 1 and the
final with the values ¢ = p” and d. The special case p" = 2 corresponds to Hadamard
parameters, the initial and final difference sets having the values N = 24~ and N = 2¢.
We return to this special case in Section 6, where we shall in addition make use of BSs
which are not defined on p-groups.

In the second case, with the upper sign and a =0, p = 3 and r = 1, we have u = 3,
m=3%"1 at = 3% and ah = ?’dT_l. Theorem 2.4 gives the parameters of both difference
sets as being from the Spence family, the initial with the value d — 1 and the final with
the value d.

In the third case, with the upper sign and @ = 1, p = 2 and r = 2, we have u = 4,
m = 229-1 gt = 224! and ah = 2(2%371). Theorem 2.4 gives the parameters of both
difference sets as being from the new family (4), the initial with the value d — 1 and the
final with the value d.

The above argument determines the parameter family for the initial and final differ-
ence sets in each of the three cases. Since the application of Theorem 3.2 increases the
value d by 1 without changing the associated difference set parameter family, it is natu-
ral to apply the construction recursively using Theorem 3.3. The above analysis almost
completely determines the required parameter values for the covering EBSs and BSs, by
comparison of the equations for ah and at.

In the first case we have ah = ’;ir__ll +1=pldrgpld=2ry 4 p"+2andat = p?.
The only solutions are a = 1 or, in the case p = 2, a = 2. The solution a = 1 requires a
(p?, p, p?) BS on a group of order pldtDr relative to a subgroup of order p” and the
solution a = 2 requires a (247+1, 29" 29r=1) BS on a group of order 2041+ pelative to
a subgroup of order 2". To begin the recursion with the smallest value d = 1 we require
a (1,1,2,—) covering EBS on a group of order p” and a (2,1,1,—) covering EBS on a
group of order 271! respectively.

Similarly, in the second case we require a (3¢,34,3%) BS on a group of order

3d+1
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relative to a subgroup of order 3 and, to begin the recursion with d = 1, a (1,1,1,+)
covering EBS on a group of order 3.

Likewise in the third case we have ¢ = 1 or a = 2. When ¢ = 1 we require a
(22d+1 92d+1 92d+1) BS on a group of order 22413 relative to a subgroup of order 4 and,
for d =1, a (2,2,2,4) covering EBS on a group of order 8. When a = 2 we require a
(22442 92d+1 92d) BS on a group of order 22¢+4 relative to a subgroup of order 4 and, for
d=1,a(4,2,1,4) covering EBS on a group of order 16.

In each case it is straightforward to find an appropriate covering EBS, so the ap-
plication of the recursive construction depends on finding families of BSs as described
above. We now show how to construct some of the identified families using the recursive
construction for BSs of Theorem 4.6. The initial BSs can be traced to three sources:
the (p",p",p") BS of Corollary 4.2, due to Davis [10]; the (8,4,2) BS described in Sec-
tion 2, due to Arasu and Sehgal [3]; and the (4,2, 1) BS on Z? relative to Z2 described in
Section 4, due to Jungnickel [28].

Theorem 5.1 For each d > 1, the following exist:

(i) A (p¥,p?,p?) BS on Z§,d+1)’” relative to 77

p» where p is prime and v > 1.

(ii) A (229+1 224 22d-1) BS on any group Gy of order 2°%+3 and exponent at most 4
relative to a subgroup Uy = 7% contained within two of the largest direct factors of

Gq.

(iii) A (2242 22441 22d) BS on any group Gq of order 22%t* and exponent at most 4
relative to a subgroup Uy = 72 contained within two of the largest direct factors of
G4, except possibly G1 = Z3.

Proof: The proof is by application of Theorem 4.6, using initial BSs introduced in
earlier sections.
For (i), put @ = t = p" and take Ky = {(Z:S,dH)T,Z;)}, where Hy = Zj, is contained

within r direct factors of Z](,dﬂ)r. There exists a (p",p",p") BS on Z]%T relative to the

subgroup Z;, contained within r direct factors of Z?,’”, by Corollary 4.2. For d > 1, let

Q = Z2" be a subgroup of ZZ(Jd—H)T containing Hy. For each subgroup H; # Hy of Z}()d—{—l)r

of order p”, corresponding to a hyperplane when viewed as a subgroup of ), Lemma 4.4

shows that Zy' " /H; = 70" and Q/H; = 7, is contained within r direct factors of Z%".

Therefore K41 contains an ordered pair isomorphic to (Z](,dH)T /H;,Q/H;) and the result
follows from Theorem 4.6.

For (ii), put p =r = 2, a = 8 and ¢t = 2, and take Ky to be the set of all ordered pairs
(G4,U,) for which Gy is a group of order 22¢+3 and exponent at most 4 and Uy = 73
is a subgroup contained within two of the largest direct factors of G4. An example in
Section 4 shows that there exists a (8,4,2) BS on each of the groups Z? x Zs, Z4 x Z3
and Z3 relative to Z2 contained within two of the largest direct factors of the group. For
d > 2, let Q = Z3 be a subgroup of G4 containing Hy = Uy. For each subgroup H; # Hy
of G4 corresponding to a hyperplane, Lemma 4.4 shows that G4/H; is a group of order
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22d+1 and exponent at most 4 and Q/H; = 73 is contained in two of the largest direct
factors of G4/ H;.

For (iii), put p =7 = 2, a = 16 and ¢t = 4, and take K4 to be the set of all ordered pairs
(Gg,Uy) included in the statement of the theorem (so that (Z3,U;) ¢ K1). An example
in Section 4 shows that there exists a (16,8,4) BS on each of the groups 7% x 72, Z, x Z5
and Z$§ relative to Z3 contained within two of the largest direct factors of the group. The
remainder of the proof is similar to that of (ii) except that we must ensure Go/H; % 73
for H; # Hy. We achieve this by taking Q = Z5 to be a subgroup of G4 containing
Hy = Uy for d > 1 as before, with the additional constraint that () be contained within
four of the largest direct factors of G4. O

Note that although the group G4 = Z} is not covered by the case d = 1 of Theo-
rem 5.1 (iii), this exception does not propagate to higher values of d under the recursive
construction of Theorem 4.6.

We next combine the BSs of Theorem 5.1 with initial covering EBSs whose parameters
were previously identified in order to produce families of covering EBSs.

Theorem 5.2 For each d > 0, the following exist:
(i) A4 (p?,p?, ’% +1,—) covering EBS on ZZ(,dH)T, where p is prime and r > 1.

(ii) A (22d+1 22d, %, —) covering EBS on any group of order 2243 and ezponent at
most 4.

(iii) A (39,37, 3d+21_1,+) covering EBS on Z3.

(iv) A (22442, 22d+1 22d+3$, +) covering EBS on any group of order 22%+* and exponent
at most 4, except possibly Z3 in the case d = 1.

Proof: The proof is by application of Theorem 3.3 to the BSs of Theorem 5.1, together
with appropriate initial covering EBSs.

For (i), put a =m =1, h =2 and t = p", and take G; = {Zédﬂ)r} in Theorem 3.3.
There exists a trivial (1,1,2, —) covering EBS on Zj,. The required BSs are provided by

Theorem 5.1 (i), and Zi*" /2 is isomorphic to Zg", which is contained in G4_1.

For (ii), put p = r =2, a =t = 2 and m = h = 1, and take G; to be the set
of all groups of order 22¢*3 and exponent at most 4. There exists a trivial (2,1,1, —)
covering EBS on Z4 x Zy and Z3. The required BSs on Gy relative to U are provided by
Theorem 5.1 (ii), and clearly G4/Uy is a group of order 22¢*! and exponent at most 4.

For (iii), put p=3,r=1,a=m =h =1 and t = 3, and take G5 = {Zg“}. There
exists a (1,1,1,4) covering EBS on Z3 comprising two elements (the complement of a
trivial (2, 1,1, —) covering EBS on Z3). The required BSs are provided by Theorem 5.1 (i)
withp=3 and r =1, and ZgH/Z?, is isomorphic to Zg.

For (iv), put p=r =2, a=m =2, h = 1 and ¢t = 4, and take G4 to be the set of
all groups of order 224+ and exponent at most 4 but exclude Z3 from G;. The examples
of (16,6, 2,4)-difference sets in Section 1 are equivalent to a (4,2,1,+) covering EBS on
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72, 74 x 73 and Z§. The required BSs are provided by Theorem 5.1 (iii), and G4/Uy is a
group of order 22¢+2 and exponent at most 4. Furthermore the choice of U, ensures that
Gy / Uy & Zi. a

We now list the families of difference sets arising from the covering EBSs of Theo-
rem 5.2. The unifying corollary which follows is one of the central results of the paper.
There are no abelian groups known to contain difference sets in the indicated families
which are not covered by this result. (As throughout the paper, the groups involved are
implicitly abelian.)

Corollary 5.3 For each d > 0, the following exist:

(i) A McFarland difference set with ¢ = p" in any group of order qd"'l(qd;_% +1)
containing a subgroup isomorphic to Z§,d+1)’", where p is prime and r > 1.

(ii) A McFarland difference set with ¢ = 4 in any group of order 22‘1"'3(%%) contain-
ing a subgroup of order 2243 and exponent at most 4.

(iii) A Spence difference set in any group of order 3d+1(3d+%)

d+1
23 -

containing a subgroup

isomorphic to
(iv) A difference set with parameters (4) in any group of order 22‘”4(%) containing
a subgroup of order 224* and exponent at most 4, except possibly when the subgroup
is 73 in the case d = 1.

Proof: Apply Theorem 2.4 to the covering EBSs of Theorem 5.2. O

In Corollary 5.3 (i), the Sylow p-subgroup of the group containing the McFarland

difference set is isomorphic to ZI(,dH)T when p is odd, and is isomorphic to ngH)TH or
Zs % 257" when p = 2, because p divides the index .—* +1 if and only if p = 2. In

the remaining parts of Corollary 5.3, the Sylow p-subgroup of the group containing the
difference set is isomorphic to the subgroup mentioned (where p = 2 in parts (ii) and (iv)
and p = 3 in part (iii).)

Corollary 5.3 (i) is due to McFarland [42] for p odd and to Dillon [20] for p = 2.
Ma and Schmidt [39] showed that for p odd, the condition that the Sylow p-subgroup is
isomorphic to Z;S,dﬂ)r is necessary as well as sufficient, provided that p is self-conjugate
modulo the group exponent. (The definition of self-conjugate is given before Lemma 1.1.)
In a subsequent paper Ma and Schmidt [38] showed that for p = 2 and r > 1, the
Sylow 2-subgroup must have exponent at most 4 provided that 2 is self-conjugate modulo
the group exponent. (For p = 2 and r = 1 the McFarland parameters correspond to
Hadamard parameters with N = 2¢, which are considered separately in Section 6.)

Corollary 5.3 (ii) extends the set of groups known to contain McFarland difference sets
in the case ¢ = 4 beyond those identified in Corollary 5.3 (i). None of these additional
groups was previously known to contain difference sets with the single exception, due to
Arasu and Sehgal [3], of Z7 x Zs x Z3 in the case d = 1. Moreover the self-conjugacy
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condition from Ma and Schmidt’s result [38] above is always satisfied when ¢ = 4, since
the exponent of a group divides the order and 2 is self-conjugate modulo 22‘”3(%).
We have therefore established that a McFarland difference set with ¢ = 4 exists in an
abelian group if and only if the Sylow 2-subgroup has exponent at most 4. Unlike the
above result for McFarland difference sets with ¢ = p” odd, this result does not depend
on a self-conjugacy condition. The only other comparable result for families of difference
sets, relying on a single group exponent condition, is due to Kraemer [31] for Hadamard
difference sets. We shall show in Section 6 that Kraemer’s result can also be derived from
the framework of this paper.

Corollary 5.3 (iii) is due to Spence [54]. Using Theorem 5.4 below it is easily shown
that the condition that the Sylow 3-subgroup is isomorphic to Zg""l is necessary as well
as sufficient, provided that 3 is self-conjugate modulo the group exponent.

Corollary 5.3 (iv) describes the first new family of difference set parameters to be
discovered since 1977 [54]. Apart from the case d = 0, giving Hadamard parameters,
all the examples were previously unknown. This also gives a new family of symmetric
designs with the same parameters (4). For d = 1, Ma and Schmidt [38] have shown that
the Sylow 2-subgroup must have exponent at most 4. The only open case for difference
set parameters (320,88,24,64) is therefore Z3 x Zs. For d > 1, we can use standard
techniques to bound the exponent of the Sylow 2-subgroup. We shall use the following
special case of Theorem 4.33 of Lander [32], based on results of Turyn [55].

Theorem 5.4 Suppose that there ezxists a (v, k, A, n)-difference set in an abelian group
G containing a subgroup H of index w. Suppose also that p is a prime for which p | w,
p? | n for some r > 1, p is self-conjugate modulo exp(G/H), and the Sylow p-subgroup
of G/H is cyclic. Then p"w < v.

Corollary 5.5 The Sylow 2-subgroup of a group containing a difference set with pa-
rameters (4) has exponent at most 8 provided that 2 is self-conjugate modulo the group
exponent.
- . 2d+4 (2212 -1)
Proof: The group G containing the difference set has order v = 2 —7—. Let
the exponent of the Sylow 2-subgroup be 2%. Choose the subgroup H so that w =
2d+2
2““%1) with the Sylow 2-subgroup of G/H cyclic. Apply Theorem 5.4 with p = 2
and r =2d + 1 to obtain o« < 3. O

The discussion at the beginning of this section identifies the possible parameters for
BSs on p-groups which could be used in Theorem 3.2 to produce difference sets. Not
all of the identified parameter sets are included in Theorem 5.1. In particular, we have
seen that a (2¢¢,¢¢, ¢¢ /2) BS on a group of order 2¢%*! relative to a subgroup of order
q = 2" would yield a McFarland difference set with parameters ¢ and d (assuming the
appropriate covering EBS existed). However the only groups on which we know that such
BSs exist for ¢ > 4 are Zng)H_l and Z4 X ngﬂ)r_l, using Lemma 2.1 on Theorem 5.1 (i).
Construction of such BSs on other groups would give new McFarland difference sets. For
example, in the case ¢ = 8 and d = 1, a (16, 8,4) BS on a group of order 128 and exponent
4 (other than Z, x Z3) relative to a subgroup of order 8 would give a new (640,72, 8, 64)
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McFarland difference set. The results of this paper grew out of an unsuccessful attempt
to construct such a BS. In the case ¢ = 16 and d = 1, a (32,16, 8) BS on a group of order
512 and exponent 4 (other than Z, x Z?) relative to a subgroup of order 16 would give a
new (4608,272,16,256) McFarland difference set. (We have imposed exponent 4 in both
cases because the self-conjugacy condition from Ma and Schmidt’s result [38] is always
satisfied when d = 1.)

6 Application to Hadamard difference sets

In this section we use the key constructions, Theorem 3.2 for covering EBSs and Theo-
rem 4.3 for BSs, to obtain difference sets with parameters from the Hadamard family (1).
Although many of the results were previously known our intention is to show that the
various construction methods in the literature can be concisely brought into the unifying
framework of this paper. Based on this formulation, we suggest a number of generalisa-
tions in Section 9.

Since the Hadamard parameters with N = 2¢ are equivalent to the McFarland pa-
rameters with ¢ = 2, we have already established in Corollary 5.3 (i) that there exists
a Hadamard difference set in any group of order 22¢*2? and rank at least d + 1. This
construction depended on the number of building blocks h and ¢ in Theorem 3.2 being
large. However we now demonstrate by means of an example that for the Hadamard
parameters it is sufficient to take h = t = 2, which allows additional freedom in choosing
the group G (which need not be a 2-group).

Assume we can find a (9,3,2, —) covering EBS on Zy x Z3, so that by Theorem 2.4
there exists a (36, 15,6,9) Hadamard difference set in Z3 x Z3 and Z, x Z3. Assume also
that we can find a (18,6,2) BS on Z3 x Z% relative to Zs. By Theorem 3.2 with u = 2,
this BS and covering EBS together give a (18, 6,4, —) covering EBS on 72 x Z3. Therefore
by Theorem 2.4 there exists a (144, 66, 30, 36) Hadamard difference set in G x Z3 for any
group G of order 16 and exponent at most 8.

Now apply Lemma 2.1 with s = 2 to the (18,6,2) BS to obtain a (36,6,1) BS on
Z4 X Zo x 73 and Z3 x Z2 relative to any subgroup of order 2. Then by Theorem 4.3
with p" = 2 there exists a (72,12,2) BS on G x Z% relative to any subgroup of order 2,
where G is any group of order 16 and exponent at most 4 (since G/H; = Z4 x Zo or Z3).
Furthermore we can apply Lemma 2.3 with s = 2 to the (18,6,4,—) covering EBS to
obtain a (36, 6,2, —) covering EBS on Zs x Zs x Z3 and Z3 x Z%. Then by Theorem 3.2
with u = 2, these (36,6,2,—) covering EBSs together with the (72,12,2) BSs give a
(72,12,4, —) covering EBS on G x Z%, where G is any group of order 16 and exponent at
most 4. Therefore by Theorem 2.4 there exists a (576,276, 132,144) Hadamard difference
set in G x Z3 for any group G of order 64 and exponent at most 16.

The pattern indicated by this example forms the model for the constructions in this
section, each step of the recursion using an initial Hadamard difference set with N =
2¢-1m to construct a final Hadamard difference set with N = 2%mn, where m is odd.
Provided the initial BS and covering EBS can be found, the group of order m? (Z3 in the
above example) plays no part in the recursion. For example, given a (1,1,2, —) covering
EBS on Zy (which is trivial) and a (2,2,2) BS on Z3 relative to Zy (which exists by
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Corollary 4.2), by the same argument as above there exists a (64,28,12,16) Hadamard
difference set in any group of order 64 and exponent at most 16. As in Theorem 3.3 we
begin by assuming the existence of an initial covering EBS and a family of BSs.

Theorem 6.1 Let M be a group of odd order m? and for each d > 1 let G4 be the set of
all groups of order 22¢ and exponent at most 2¢. Suppose that there exists a (m?,m,?2, —)
covering EBS on 7o X M. Suppose also that for each d > 1 and for each G4 € Gy there
exists a (22971 m?2,2%m,2) BS on G4 x M relative to a subgroup Uy (depending on Gy) of
order 2. Then for each d > 1 and for each Gy € Gy there exists a (22"1m?2,29m, 4, —)
covering EBS on G4 x M.

Proof: The proof is by induction on d. We begin by establishing the case d = 1.
By assumption there exists a (m?,m,2, —) covering EBS on Zy x M and a (2m?,2m, 2)
BS on ZZ x M relative to Zs. Combine these using Theorem 3.2 with G = Z% x M and
U = Z5 to obtain the case d = 1.

Assume the case d — 1 to be true. For each G4 € G4, by assumption there exists a
(229=1m?2, 2%m, 2) BS on G4 x M relative to a subgroup Uy of order 2. Now G4/Uy has
order 22— and exponent at most 2% and so attains the exponent 2¢ in at most one direct
factor. Therefore Gy4/Uy, contains a subgroup S/Uy of index 2 and exponent at most 2¢-1.
The inductive hypothesis then implies that there exists a (22¢73m?2,297m, 4, —) covering
EBS on (S/Uy) x M. Apply Lemma 2.3 with s = 2 to obtain a (22¢72m? 29-1m 2, )
covering EBS on (G4/Ug) x M. Combine this covering EBS with the BS on G4 x M
relative to Uy, using Theorem 3.2 with G = G4 x M. This shows the case d is true and
completes the induction. O

We next show that the family of BSs required in Theorem 6.1 can be obtained re-
cursively from a single BS using Theorem 4.3. Although Theorem 6.1 requires a BS on
G4 X M relative to only a single subgroup Uy, the recursion produces a BS on G4 x M
relative to any subgroup of order 2. By rewriting the generators of G; we can assume
that such a subgroup is contained within a single direct factor of G .

Theorem 6.2 Let M be a group of odd order m? and for each d > 1 let Gy be the set
of all groups of order 2% and exponent at most 2¢. Suppose there exists a (2m?,2m,2)
BS on 7% x M relative to Zo. Then for each d > 1 and for each Gq € Gq there erists a
(229-1m?2,2%m,2) BS on G4 x M relative to any subgroup of order 2.

Proof: The proof is by induction on d. The case d = 1 is true by assumption.
Assume the case d — 1 to be true. For each G4 € G4, let Hy be any subgroup of order 2.
Choose Q = 72 to be a subgroup of Gy containing Hy and let the subgroups of G4 of
of order 2, corresponding to hyperplanes when viewed as subgroups of @), be Hy, H;
and H,. For each i, Gq/H; has order 22! and exponent at most 2¢ and so, as in
the proof of Theorem 6.1, G4/H; contains a subgroup S/H; of index 2 and exponent
at most 2471, Then by the inductive hypothesis there exists a (22¢73m?,29"1m,2) BS
on (S/H;) x M relative to Q/H; = Zs. Apply Lemma 2.1 with s = 2 to obtain a
(229-2m?2,29=1m, 1) BS on (G4/H;) x M relative to Q/H;. Therefore by Theorem 4.3
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there exists a (22971m?2,2%m,2) BS on G4 x M relative to Hy. This shows the case d is
true and completes the induction. O

Previously, in Theorem 3.2, we gave a construction for a covering EBS based on the
existence of a BS and another covering EBS. We now show how to construct a particular
type of BS (required as the initial BS in Theorem 6.2) from a covering EBS.

Lemma 6.3 Let M be a group of odd order m?. Suppose there exists a (m?,m,2,—)

covering EBS on Zy x M. Then there exists a (2m?,2m,2) BS on 73 x M relative to Zo.

Proof: Let Z3 = (z,y | 22 = y?> = 1) and let {A, B} be a (m?,m,2, —) covering EBS
on G = (y) x M, where the building block containing m? — m elements is A. Define the
subsets C = A+ z(G\ A) and D = B+ z(G\ B) of Z3 x M.

Let x be a nonprincipal character of (x) x G. Firstly consider the case when y is
nonprincipal on G. By the definition of covering EBS, {|x(4)|,|x(B)|} = {0,m} so
{Ix(C)], |x(D)|} = {0,m|1 — x(x)|}. Therefore if x is also nonprincipal on (z) (so x
maps z to —1) we have {|x(C)|,|x(D)|} = {0,2m} whereas if x is principal on (z) then
x(C) = x(D) = 0. Next consider the case when x is principal on G (and so nonprincipal
on (z)). This gives x(C) = |A| — (|G| — |A]) = —2m and x(D) = |B| — (|G| —|B]|) = 0.

Combining the two cases, {C, D} is a (2m?,2m,2) BS on (r) x G relative to (z). O

For example, at the beginning of this section we assumed the existence of a (9, 3,2, —)
covering EBS on Zy x Z2 and a (18, 6,2) BS on Z% x Z2 relative to Zy. By Lemma 6.3 the
existence of the second is implied by the existence of the first.

We now combine Theorems 6.1 and 6.2 and Lemma 6.3 to show that only an initial
covering EBS is required for the recursions.

Corollary 6.4 Suppose there ezists a (m(™2),m,4,4) covering EBS on a group M of
odd order m?. Then the following exist:

(i) A4 (2291'm?2,2%m,2) BS on G4 x M relative to any subgroup of order 2, where d > 1
and Ggq is any group of order 2%¢ and exponent at most 2%.

(ii) A (22¢-1m?2,29m, 4, —) covering EBS on Gq x M, where d > 1 and Gy is any group
of order 2%¢ and ezponent at most 2¢.

(iii) A Hadamard difference set with N = 2%m in Gq x M, where d > 0 and Gq is any
group of order 2242 and exponent at most 2412,
Proof: For (i), by assumption there exists a (m(mT_l),mA, +) covering EBS on M.
Apply Lemma 2.3 with s = 2 to obtain a (m(m — 1), m,2,+) covering EBS on Zy x M.
This can be equivalently written as a (m?,m,2,—) covering EBS on Zs x M, so from
Lemma 6.3 there is a (2m?,2m,2) BS on Z3 x M relative to Zs. Apply Theorem 6.2.
For (ii), as noted above there is a (m?,m,2,—) covering EBS on Zy x M. Apply
Theorem 6.1 to this covering EBS and the BSs of (i).
For (iii), apply Theorem 2.4. The case d = 0 results from a (m(21),m, 4, +) covering
EBS on M, which exists by assumption. Each case d > 1 results from the covering EBSs
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of (ii), noting that the group Gy in (iii) contains a subgroup of index 4 and exponent at
most 2¢. O

A result broadly equivalent to Corollary 6.4 was proved by Jedwab [27] from the view-
point of perfect binary arrays, via lengthy computation. (A (m(mT_l),m,ll, +) covering
EBS on [}, Zs,, where m? = [[/_, s;, implies the existence of a s1 X s X ... X 5, “binary
supplementary quadruple,” which is the initial object for the recursive constructions in
[27].) We believe the method presented here to be much clearer.

We have chosen in Corollary 6.4 to begin with a (m(™51), m, 4, +) covering EBS on M,
although it is clear from the proof that it would be sufficient to begin with a (m?,m,2, —)
covering EBS on Zy x M. (In the running example of this section, a (3,3,4,+) covering
EBS on ZZ implies the existence of the required (9,3,2, —) covering EBS on Zy x Z3.)

The reason is the following composition theorem for (m(%Z1),m,4,4) covering EBSs.

m;—1

Theorem 6.5 Suppose there exists a (m;(™5—=), m;,4,+) covering EBS on a group M;

of odd order m? for i = 1,2. Then there ezists a (mlmg(m”g?_l),mlmz,ll, +) covering

EBS on M1 X MQ.

Proof: For i = 1,2 let {4;, B;,C;, D;} be a (m;(™51),m;,4,+) covering EBS on
M; and let the building block containing m;(Z5t) elements be D;. Define the following

elements of the group ring Z[M; x My]:

A = MAy+AMy— A1Ay + B1By — A1 By — B Ay,
B = M,Cy+ AMy— A,Cy + B, Dy — A, Dy — ByCs, 6
C = MAy+ CiMy —Ci1As + DBy — C1By — D Ay,
D = MCy+CiMy—CCy+ DDy — C1Dy — D1C5.

We firstly show that each of these elements can be regarded as a subset of M7 x My (so
the coefficients in the group ring are 0 or 1). Consider the following subsets of M7 x Mo:

Si = (AN Bi) x (My\ A),
Sy = ((Mi\ A1) N (M1 \ By)) x Ay,
Ss = (AiN(Mi\ B1)) x (Mz\ By),
Sy = ((My\ A1) NBy) X Ba.

By inspection the S; have empty pairwise intersection. Let T" = A; N Bj, and note that
we can write (M; \ A1) N (My \ By) as (My \ A1) \ (B1 \ T). Then in the group ring
we have S; = T(M2 - AQ), Sy = (M1 — A — B+ T)AQ, S3 = (A1 — T)(M2 — BQ) and
S4 = (B1 — T) By, from which S; + S + S3 + S4 = A. Since the S; have empty pairwise
intersection, A is therefore a subset of M; x Ms. Similar arguments hold for B, C' and D.

We claim that {A, B, C, D} is a (myma(™22-1) mimo,4,+) covering EBS on M; x
M,. To show that A, B, C and D have the correct size, note that for 1 = 1,2 we have
|M;| = m7, |Ai| = |Bi| = |Ci| = my(™5=) and |D;| = m;(™5). Then from (6) we
have |A| = |M1A2‘ + ‘AlMQ‘ — |A1A2| + |B1_BQ| — |A132| — |B1A2| = mlmQ(%ﬂ), and
similar calculations show that |B| = |C| = mimay(™%2=1) and |D| = mimy (T2l Tt
remains to establish the character properties for {A, B, C, D}.
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Let x be a nonprincipal character of M; x Ms. Firstly consider the case when y is
nonprincipal on M7 and M,. Then the terms in (6) involving M; or M, have a character
sum of 0. By the definition of covering EBS, for i = 1,2 exactly one of A;, B;, C;
and D; has nonzero character sum (with modulus m;). Since each term X;Y5, where
X,Y € {4, B,C, D}, occurs exactly once in (6) it follows that exactly one of A, B, C and
D has nonzero character sum (with modulus mims). By symmetry in the subscripts 1
and 2 in the equations (6), it is now sufficient to consider the case when x is principal
on M; and nonprincipal on M. Exactly one of the building blocks Ag, Bo, C5 and Do
then has a nonzero character sum. If this building block is A, then x(B) = x(D) = 0,
X(C) = (IM3] ~ |C1| — [ D1])x(A2) = 0 and x(A) = (M| - |A1] - | Bi)x(A2) = mix(As),
which has modulus mims. If instead the building block with nonzero character sum is
By, Cy or Dy then similar calculations show that C, B or D respectively has nonzero
character sum (with modulus mims) while the rest of A, B, C and D have zero character
sum. O

Theorem 6.5 is based on a construction of Turyn [56] involving incidence matrices of
Hadamard difference sets known as Williamson matrices. (The form of the construction
given in [56] corresponds to the equations for the S; in the above proof). In Theorem 6.5
we have established additional character properties of Turyn’s construction for use in
Corollary 6.4. The construction of Hadamard difference sets now relies on finding initial
(m(mT*l),m,él, +) covering EBSs on groups of order m? (which, from the relationship
between covering EBS parameters given after Theorem 2.4, must be odd). The following
examples are known.

Theorem 6.6 There exists a (m(mT_l),m,ll, +) covering EBS on the following groups
M of order m?:

(i) M is the trivial group.
(ii) M = Z3., where o > 1.

(iii) M = Zﬁ, where p is an odd prime.

Theorem 6.6 (ii) is due to Arasu, Davis, Jedwab and Sehgal [2]. Theorem 6.6 (iii)
is due to Chen [5], who built on a succession of papers devoted to finding a Hadamard
difference set in Z2 x Z;l, or Zy X Z;l). Initially Xia [58] constructed such a difference set for all
primes p congruent to 3 modulo 4. Xiang and Chen [59] then showed that this construction
could be viewed as depending on subsets whose character properties correspond to those
of a covering EBS. Next, van Eupen and Tonchev [22] found a difference set example for
p = b5 and subsequently Wilson and Xiang [57] found an example for p = 13 and p = 17.
Finally Chen [5] solved the problem for all odd primes p by constructing the covering
EBS of Theorem 6.6 (iii).

Corollary 6.7 Let M be either the trivial group or the group []; Z3«; X I1; Z;l,j, where
2

a; > 1 and where pj is an odd prime, and let |M| = m*. Then the following exist:

(i) A (m(22),m,4,4) covering EBS on M.
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(ii) A (22971m?2,2%m,2) BS on G4 x M relative to any subgroup of order 2, where d > 1
and Gyq is any group of order 2°¢ and exponent at most 2¢.

(iii) A (224-'m?2,2%m, 4, —) covering EBS on Gqx M, where d > 1 and G4 is any group
of order 2%¢ and exponent at most 2%.

(iv) A Hadamard difference set with N = 2%m, in Gq x M, where d > 0 and Gq is any
group of order 22412 and exponent at most 2412,

Proof: For (i), apply Theorem 6.5 to the initial covering EBSs of Theorem 6.6. Then
(ii), (iii) and (iv) follow from Corollary 6.4. O

Corollary 6.7 (iv) is one of the central results of the paper, together with Corollary 5.3
(once again, the groups involved are implicitly abelian). There are no other abelian groups
known to contain Hadamard difference sets. The case where M is trivial is due to Kraemer
[31]. When combined with an exponent bound given by Turyn [55], Kraemer’s result
states that Hadamard difference sets exist in abelian groups of order 22¢+2 if and only
if the exponent is at most 242, For the case where M is nontrivial many nonexistence
results depending on number theoretic conditions are known (for details see Davis and
Jedwab [13]).

7 Families of building sets

In this section we demonstrate the full power of the recursive construction for BSs of
Section 4 by applying Theorem 4.3 systematically to a small initial set of BSs. This
produces several families of BSs, including as special cases all those previously found in
Sections 5 and 6 for the purpose of constructing difference sets. The BSs constructed
here will be used in Section 8 to deduce the existence of families of semi-regular RDSs,
and in Section 9 when we discuss nonabelian groups. Since the construction is based
on Theorem 4.3, all the BSs are defined on a group G relative to an elementary abelian
subgroup U, although G will not necessarily be a p-group. We are now interested not
only in the groups G on which BSs with given parameters exist, but also in the different
possible subgroups U. The arguments in this section are probably the most difficult in
the paper!

In general, we wish to find (a,+/at,t) BSs for which the number of building blocks
t is large. We have seen in Section 5 that difference sets in several parameter families
can be constructed from BSs using Theorem 3.2 only when ¢ is large, and by Lemma 2.1
a (a,/at,t) BS on a group G is clearly a more general object than a (as,/at,t/s) BS
on a group G’ containing G as a subgroup of index s. On the other hand, we have seen
in Section 6 that it is possible to trade the growth in ¢ under the recursive application
of Theorem 4.3 for a more general form for the group G. For example, for any d > 1,
by Theorem 5.1 (i) there is a (2¢,2%,2%) BS on Z%¢™! relative to Zy whereas by Corol-
lary 6.7 (ii) there is a (22¢71,2¢,2) BS on any group of order 22¢ and exponent at most
2¢ relative to any subgroup of order 2. The first set of BSs is more general in that the
number of building blocks is 2¢ rather than 2, but the second set of BSs is more general
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in that the group rank can be as small as 2 rather than d + 1. (Lemma 2.1 allows some
of the second set of BSs to be constructed from the first, but not when the group rank is
less than d + 1). We now present a general recursive application of Theorem 4.3 which
gives the result of applying Lemma 2.1 prior to Theorem 4.3 as desired, throughout the
recursion, to the BSs with the smallest number of building blocks. As before, the recur-
sion is controlled by the parameter d. We introduce a new parameter ¢, ranging from a
minimum value ¢ up to d, which will be used in applications of Theorem 7.1 to indicate
the maximum exponent p¢ of the Sylow p-subgroup of the group Gg.

Theorem 7.1 Let p be prime and let r > 1 and ¢ > 1. For each d > ¢ and for each c in
the range ¢ < c < d let Kq,. be a set of ordered pairs (G, Uq,c), where Gq. is a group of
order pl4+t¢=2¢¥2) g containing a subgroup Uy, =2 Z7. Suppose that for each (Gee,Uze) €
Kzz there exists a (p"a,p"v/at,p"t) BS on Gez relative to Uzz. Suppose also that, for each
d > € and for each c in the range ¢ < ¢ < d and for each (Gyc,Uqc) € Kg ¢, Gac contains
a subgroup ) = ZIQ)’" and subgroups Hy = Ugq, Hy,... Hy of order p" (corresponding to
hyperplanes when viewed as subgroups of Q) such that, for all H; # Hy,

(i) K41, contains an ordered pair isomorphic to (Ga./H;, Q/H;) for each ¢ in the range
c<c<d-1, and

(ii) Ggq/H; contains a subgroup S/H; of index p" such that Kq_1 41 contains an ordered
pair isomorphic to (S/H;, Q/H;).

Then for each d > ¢ and for each c in the range ¢ < ¢ < d and for each (Gg.c,Uq.) € K,
there exists a (pldte=2e+Urq pld=2+r /gt pd=c+Urt) BS on G, relative to Uy

Proof: The proof is by induction on d. The case d = ¢ is true by assumption.
Assume the case d — 1 to be true (for each value of ¢ in the range ¢ < ¢ < d — 1)
and consider H; # Hy. For each value of ¢ in the range ¢ < ¢ < d we can apply
Theorem 4.3 with G = G4, and Hy = Uy to establish the case d, provided there exists
a (pldte=20rq pld=or\/at, pl@=)7t) BS on G4./H; relative to Q/H;. The subsequent
analysis depends on whether ¢ <d —1 or ¢ = d. When ¢ < d — 1, by assumption Kg_1 .
contains an ordered pair isomorphic to (Gq./H;, Q/H;) so the required BS is given by
the inductive hypothesis with the value c. When ¢ = d, there is no inductive hypothesis
with the value c¢. But by assumption G4 q/H; contains a subgroup S/H; of index p" such
that K4_1,4—1 contains an ordered pair isomorphic to (S/H;,Q/H;). Therefore by the
inductive hypothesis there exists a (p(24=26-1rq p(d=07\/at p"t) BS on S/H; relative to
Q/H;. Then Lemma 2.1 with s = p" gives the required BS on G44/H; relative to Q/H;.
This completes the induction. O

The special case ¢ = ¢ = 1 of Theorem 7.1 is similar to Theorem 4.6. We shall
consider groups G in Theorem 7.1 whose Sylow p-subgroup has exponent at most p°.
The minimum value of ¢ is ¢, which will be either 1 or 2. (For example, we must take ¢ = 2
when considering an initial (4,2+v/2,2) BS on a group G of order 8 relative to a subgroup
U of order 2, which we shall later show exists only if U is contained in a subgroup of
G isomorphic to Z;.) Then, since Gg. has order p(@+¢=2¢4+2)rq_ for fixed d > 2 we see
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that for larger values of ¢ the number of building blocks p(?=¢*17¢ is smaller but the
Sylow p-subgroup is allowed to have smaller rank (and larger exponent). Furthermore by
Theorem 2.2 we can construct a semi-regular RDS in groups G&, . for which the exponent
of the Sylow p-subgroup is a multiple of pet(@=ct+1)r For r > 1 this means we can achieve
a smaller rank for G/, ., by taking c large, at the cost of a smaller maximum exponent.
For further details see Section 8.

Theorem 7.1 is particularly straightforward to apply when p" = 2 and we now do so,
after giving another construction for a BS from a covering EBS similar to Lemma, 6.3.

Lemma 7.2 Let M be a group of odd order m?. Suppose there exists a (m?,m,2,—)

covering EBS on 7o X M. Then there exists a (4m2, 23/2m, 2) BS on Z4 X Zo X M relative
to the subgroup of order 2 contained within Z4.

Proof: Let Zy X Zy = (z,y | z* =y = 1) and let {4, B} be a (m?,m,2, —) covering
EBS on G = {(y) x M. Define the subsets C = (1 + z)(4 + 2?(G \ 4)) and D =
(1+z)(B +2%(G\ B)) of Zy x Zo x M. A similar method to the proof of Lemma 6.3
shows that {C, D} is a (4m?2,2%?m,2) BS on (z) x G relative to (z?). O

Corollary 7.3 Let M be either the trivial group or the group [[; Z3«; x [1 Z;l,j, where

J
@; > 1 and where p;j is an odd prime, and let |M| = m?.

(i) For each d and c satisfying 1 < c < d, there exists a (247¢"1m?2, 29m,29-¢+t1) BS on
Ga,.c X M relative to any subgroup of order 2, where Gy is any group of order 2d+e
and exponent at most 2°.

(ii) For each d and c satisfying 2 < ¢ < d, there exists a (20t¢=2m?2 2(24=1)/2yp gd—c+tl)
BS on Gq. x M relative to any subgroup Uy . of order 2 which is contained within
a subgroup of Gg. isomorphic to Zs, where Gg. is any group of order 241 and
exponent at most 2€.

Proof: By Corollary 6.7 (i) there exists a (m(Z51t),m,4,+) covering EBS on M.
Therefore (as in the proof of Corollary 6.4) there exists a (m2,m,2, —) covering EBS on
Zo x M. We shall now apply Theorem 7.1 with p" = 2.

For (i), let a = m? and € = t = 1 and take K4, to be the set of all ordered pairs
(Gae x M,Uq ) for which G4 is a group of order 29+¢ and exponent at most 2¢ and Ud,c
is a subgroup of order 2. By Lemma, 6.3 there exists a (2m?,2m, 2) BS on Z3 x M relative
to Zo, which satisfies the condition on Kz Let @ = 72 be a subgroup of G, containing
Hy = Uy, and let the subgroups of Gy of order 2, corresponding to hyperplanes when
viewed as subgroups of @, be Hy, Hy and Hy. For H; # Hy and d > 1, clearly G4./H;
has order 24t¢~1 and exponent at most 2¢ when ¢ < d — 1, and it is easily shown that
G4,4/H; contains a subgroup S/H; (containing @Q/H;) of index 2 and exponent at most
24=1_ The result follows from Theorem 7.1.

For (i), let a = 2m?, € =2 and ¢t = 1 and take Ky to be the set of all ordered pairs
(G4, x M,Ug,.) for which G4, is a group of order 2¢+c—1 and exponent at most 2¢ and
Uq,c is a subgroup of order 2 contained within a subgroup of G4, isomorphic to Z4. By
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Lemma 7.2 there exists a (4m2,23/2m, 2) BS on Z4 x Zo x M relative to the subgroup
of order 2 contained within Z,, which satisfies the condition on Kzz. The remainder of
the proof is similar to that of (i), with an additional condition on @/H; which we now
demonstrate. By Lemma 4.4, / H; is contained in a subgroup of G4 ./H; isomorphic to
Zy for ¢ < d. In the case ¢ = d, this implies that the subgroup S/H; of G44/H; can be
chosen as above so that )/ H; is contained in a subgroup of S/H; isomorphic to Z4 when
d>2.0

The examples of BSs used at the beginning of this section to introduce Theorem 7.1
are given by the extreme cases ¢ = 1 and ¢ = d of Corollary 7.3 (i). We now show the
condition in Corollary 7.3 (ii), that Uq . is contained within a subgroup of G4 . isomorphic
to Zs, to be necessary. This is a consequence of the character sum modulus 2(2¢-1)/2p,
being non-integer.

Lemma 7.4 Suppose there ezists a (a,m,t) BS on a group G x W relative to a subgroup
U of G, where G is a 2-group and m is not integer. Then rank(G/U) = rank(G).

Proof: Suppose, for a contradiction, that rank(G/U) < rank(G). Then U contains
a nonidentity element v for which there is no g € G x W satisfying ¢ = u. Then we
can define y to be the character mapping u to —1 and mapping every element of G x W
not in (u) to 1. x is nonprincipal on U and so by the definition of BS there is a building
block B; for which |x(B;)| = m. But x(B;) is the sum of terms each of which is 1 or —1
whereas by assumption m is not integer. O

A RDS in a group U x W relative to U is said to be “splitting”; the conclusion
rank(G/U) = rank(G) implies in particular that the BS in Lemma 7.4 cannot have this
form.

We have seen how to apply Theorem 7.1 when p” = 2. We now examine conditions (i)
and (ii) of the Theorem more closely in order to indicate how we shall apply it when p" > 2.
Suppose we begin with the BSs of Corollary 4.2, taking a = ¢ = 1 and K11 = {(Z2",Z])}-
Then clearly we can satisfy condition (i) by choosing Ky 1 = {(Z]?;T, Z)}. We can satisfy
condition (ii) by choosing K29 to be the set of all ordered pairs (G2 2,Us2) for which
G'2,2 has order p*" and exponent at most p? subject to the constraint, for each H; # H,
that Go2/H; contains a subgroup of index p" and exponent p containing Q/H;. We
shall show that these constraints on the H; # Hy are all implied by the single constraint
that G2/Us 2 contains a subgroup of index p” and exponent p (by suitable choice of the
subgroup @ = Zg’"). In other words, the single constraint is that Gg2/Us 2 attains its
maximum exponent p? at most r times. For example, if Goo = Z?,T_Q X Z;;H (where
r > 1) and we write the subgroup Uz 2 = 77 as being contained within r direct factors of
G2 then all choices of Us o are allowed, except possibly Us 2 being contained within the
subgroup Z;,Q,T*Q. This demonstrates that even when all positions of Uz within Gz are
allowed, not all positions of Uy, within G4, are necessarily allowed.

Continuing to the next level d = 3, we can similarly take K31 = {(Z;",Z)}. We
then satisfy condition (i) by choosing K32 to be the set of all ordered pairs (G32,Us2)
for which G3 has order p°" and exponent at most p?, provided that (Gso/H;, Q/H;)
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is contained in Ko o. This requires (G32/H;)/(Q/H;) to contain a subgroup of index p"
and exponent p for each H; # Hy. We shall show that these constraints are all implied
by the single constraint that G32/U3 2 contains a subgroup of index p?" and exponent p.
Thus, a constraint for (d, c) = (2,2) forces a constraint for (d,c) = (3,2) and will likewise
propagate to all (d,2) with d > 2. We then satisfy condition (ii) by choosing K33 to be
the set of all ordered pairs (G3.3,Us 3) for which G5 3 has order p% and exponent at most
p3, subject to two constraints. The first, that G33/Us 3 contains a subgroup of index p”
and exponent at most p?, arises directly from condition (ii) as a result of the increase in
exponent from p? to p?. The second, that G33/Us 3 contains a subgroup of index p3" and
exponent p, is inherited via condition (ii) from the constraint on Ks5. Note that Koo
contains (Z;Q, ») and K33 contains (Z?)Q, »)- This illustrates that the rank of the Sylow
p-subgroup of Gy need not increase from the minimum value of 2r, as required so that
the subgroup @ = ZIQ,’" exists.

Following the pattern of the above example, we now produce an explicit form for
allowable ordered pairs (G4, Uq,) from Theorem 7.1, involving the existence of a sub-
group of Gg./Uq,. of exponent p? for each j in the range ¢ < j < ¢ — 1. Although the
following theorem constructs many such ordered pairs, it is necessary to check only that
the subgroup conditions hold for a particular ordered pair (Gg.,Us,.) and a particular
value of d and ¢ to conclude that the stated BS exists for this ordered pair. For the
moment we take G4, to be a p-group.

Theorem 7.5 Let p be prime and let v > 1. Suppose there erists a (p"a,p"V/at,p"t)
BS on any p-group Ggzz of order p*"a and exponent at most p® relative to any subgroup
Use = Zy,, where a > pe@r=1)-2r=1 4nd & > 1. Then for each d and ¢ satisfying ¢ < ¢ < d,
there exists a (pldte=2e+Urq pld=2+r /qt pld=c+Ury) BS on any p-group Ga. of order
pldte—2e+2)r s Where, for each
j in the range ¢ < j < ¢ — 1, Gq./Uq, contains a subgroup of index pldte=2j=1)r
exponent at most p7

Furthermore the theorem remains true for ¢ > 2 if Uz is additionally constrained
to be contained within a subgroup of Gee isomorphic to Z;z, provided that each Uy, is

likewise contained within a subgroup of Gy . isomorphic to Z;2.

a and exponent at most p° relative to any subgroup Ug . = Z
and

Proof: We shall apply Theorem 7.1, taking K4, to be the set of all ordered pairs
(Gae,Ua,.) for which G, is any p-group of order p(*+¢=2%+2)7q and exponent at most
p¢ and Uy, is any subgroup isomorphic to Zj provided that, for each j in the range
c<j<c—1,G4./U, contains a subgroup of index pldte=21=1r and exponent at most
p?. The condition on Kee is true by assumption. Consider d and ¢ satisfying d > ¢
and ¢ < ¢ < d. Since Gy, has order pld+e=2c+2)r and exponent at most p¢, and by
assumption @ > pf2r—1-2r-1 i ig straightforward to show that rank(Gg.) > 2r — 1.
Therefore Gy . contains a subgroup Qg = Zf,’" containing Uy .. Choose the subgroups H;
of Gy, corresponding to hyperplanes of Qg so that Hy = Uy, and consider H; # Hj.
The result follows from Theorem 7.1 subject to the following two conditions. Firstly, when
¢ <d—1, (Gae/H;)/(Qua.c/H;) contains a subgroup of index p(#+¢=2/=2)" and exponent
at most p’ for each j in the range ¢ < j < ¢ — 1. Secondly, Gq,a/H; contains a subgroup
S/H; (containing Qg 4/H;) of index p” and exponent at most p4~1 such that, for each j
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in the range ¢ < j < d — 2, (S/H;)/(Qq,4/H;) contains a subgroup of index p(2d=2j=3)r
and exponent at most p/. We now demonstrate the existence of the required subgroups
when ¢ < d — 1 and when ¢ = d to complete the proof.

Forc<d—1orc=d,let

T w
Gic = H Zp1+au X H Zp1+gu, (7)

u=1 u=1

where w > r, Qg is contained in the first 27 direct factors of Gy, Uy . is contained in the
first r direct factors of G4, c—1 > a, > Oforeach u,andc—12> 81 > 5o > ... > By, > 0.
By the third isomorphism theorem for groups, (Ga.c/H;)/(Qd.c/H;i) = Gac/Qa,c and so

(Gd,c/Hi)/ Qd C/H H Z pou X H Zpﬂu X H 7 pl+Buy - (8)

u=r+1

Furthermore from (7),
Gd,c/Ud,c = H Zpau X H Zp1+3u7 (9)

u=1 u=1

and by assumption (9) contains a subgroup T of index p(*t¢=2/=1)" and exponent at

most p’ for each j in the range ¢ < j < ¢ — 1. Let s = s(j) be the largest u for
which 8, > j. If s > r then it clearly follows that (8) contains a subgroup (isomorphic
to T') of index pldte=2j-1) 7"/p and exponent at most p/. If s < r then 3, < j for
all v > s and so (8) contains a subgroup of exponent at most p/ and index at most
ple=1=a)rte—1-j)s < ple=1=9)r+(d=1-9)r (since ¢ < d). Therefore for s > 7 or s < r, (8)
contains a subgroup of index pldte=2-2)1 414 exponent at most p/. This completes the
proof when ¢ < d — 1.

When ¢ = d the above argument shows that, for each j in the range ¢ < j < d — 2,
G'/Q' contains a subgroup of index p?¢*=2=2)" and exponent at most p/, where G' =
Ga,a/H; and Q' = Qq,4/H;. Let S'/Q' be any subgroup of G'/Q’ of index p" and minimal
exponent for which the exponent is attained in a minimal number of direct factors. Then
any subgroup of §'/@Q’ of index p(2¢=2/=2)7 /p" and minimal exponent has exponent at
most p’. The pre-image S’ = S/H; of S'/Q' under the quotient mapping from G’ to
G'/Q" will be the subgroup of G' = Gg44/H; of index p" we are seeking. It remains to
show that for some choice of S’/Q’' as specified above, S’ has exponent at most p?~1.
Now by definition 1+ «, < d and 1+ 3, < d for all u, and by assumption (taking ¢ = d
and j = d—1) (9) contains a subgroup of index p” and exponent at most p?~!. Therefore
the largest u for which 1 + 8, = d is at most r. Hence from (8), G'/Q’ has exponent
at most p?~! and from (7), if Gg,q attains the exponent p® it does so only in the first
2r direct factors. Lemma 4.4 then implies that if G' = G44/H; attains the exponent
p? it does so in at most r direct factors, and moreover we can rewrite the generators of
G 4,q if necessary so that all such direct factors belong to a subgroup of rank r containing
Q' = Qq,4/H;. The exponent attained in these direct factors will be reduced to p% 1 in
G'/Q' (and we have already established that the exponent of G’/Q' is at most p?~!). We
can therefore ensure that S’ has exponent at most p®~! by insisting that the selection
of §'/Q', as a subgroup of G'/Q' of index p" and minimal exponent attained a minimal
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number of times, reduces the exponent attained in these direct factors of G'/Q’ to p9=2
in preference to any other direct factors of G'/Q’ attaining the exponent p?~!. This
completes the proof when ¢ = d.

Finally, for ¢ > 2, let Uy, be additionally constrained to be contained within a
subgroup of G . isomorphic to Z;2 for each d > ¢ and for each ¢ in the range ¢ < ¢ < d.
The above induction step for d > ¢ can be modified as follows. The required BS on
G4,/ Hi relative to Qg ./H; exists provided Q4 ./H; is contained in a subgroup of G4/ H;
isomorphic to Z7, when ¢ < d — 1, and provided Q4 4/H; is contained in a subgroup of
S/H; isomorphic to 7. 2. Apply Lemma 4.4 with G = G, Hy = Ug,c and Q = Qq,c to
show that Qg ./H; is contained in a subgroup of G4/ H; isomorphic to Z;JQ for ¢ < d. This
establishes the result when ¢ < d—1. It remains to show that if Q' = Q4,4/H; is contained
in a subgroup of G’ = G44/H; isomorphic to Zy> (as just demonstrated) then we can
choose S’ = S/H; consistently with the previous procedure so that @' is also contained
in a subgroup of S’ isomorphic to Z;Z. In other words, given that the r direct factors of
G'/@Q' corresponding to the position of Q' in G’ each attains an exponent of at least p,
we must choose the subgroup S’/Q’ consistently so that none of these direct factors is
removed. The reduction in exponent to p%~2 can proceed as before since d—2 > ¢—1 > 1,
and the choice of S’/Q’ with minimal exponent does not require the removal of any of the
r direct factors unless |G'/Q'| < p?" L. It is straightforward to show that this inequality
is false and so the induction proof carries over. O

Theorem 7.5 gives conditions on subgroups of Gg./Ug . for each c in the range ¢ < ¢ <
d and for each j in the range ¢ < j7 < ¢—1. We shall show in the following four corollaries
that in particular cases some of these conditions are implied by others while some are
guaranteed to hold because of the order and exponent restrictions on Gy .. Each of the
corollaries is based on one of the following four sources, to which we apply Theorem 4.3
if necessary to obtain initial BSs comprising p"t building blocks on any p-group Ge of
fixed order and bounded exponent relative to any subgroup Uz = 7y,

Theorem 7.6 For each r > 1, the following exist:

(i) A (p",p",p") BS on Z2" relative to Zj,, where p is prime and r > 1.

(ii) 4 (»",p"/?,1) BS on ZIQ,’" relative to Z,,, where p is an odd prime and r > 1.

(iii) A (27,2'/2,1) BS on 7} relative to Z5, where r > 1.

(iv) A (8,4,2) BS on 72 x Zy relative to the subgroup 73 of 73.

Theorem 7.6 (i) is just a restatement of Corollary 4.2. Theorem 7.6 (ii) and (iii) are equiv-
alent to Jungnickel’s result [28] that semi-regular RDSs, with parameters (p", p",p", 1) and
(27,27,2",1) respectively, exist for the stated groups and subgroups. (Nonexistence re-
sults for RDSs show that no other abelian group and subgroup can be substituted in
Theorem 7.6 (ii) for » = 1 [26] or » = 2 [36], or in Theorem 7.6 (iii) for any r [24].)
Theorem 7.6 (iv) is due to Arasu and Sehgal [3], as described in Section 2.
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Suppose we apply Theorem 7.5 directly to the BSs of Theorem 7.6 (i) to obtain
BSs with parameters (p{dte=Dr pdr pld=c+l)ry By Theorem 2.2 this gives semi-regular
RDSs with parameters (deT,pT,deT,p(Qd_l)T) for d > 1. For fixed p", successive values
of the first RDS parameter p?@" differ by a factor p?". We show in the first corollary
that we can reduce this factor to p? by producing BSs which give RDSs with parameters
(p2dr+2i pr p2drt2i p(2d—=1)r+2i) for each i in the range 0 < i < 7. We do so by contracting
the initial BSs using Lemma 4.5 before applying Theorem 7.5. (This is preferable to first
applying Theorem 7.5 and then contracting, because it allows us to keep the group rank
small.) In the second and third corollaries we will achieve a reduction in the corresponding
factor from p" to p.

Corollary 7.7 Let p be prime and let i and r satisfy 0 < i < r. For each d and c
satisfying 1 < ¢ < d, there exists a (p(d+c_1)’"+i,pd’"+i,p(d_c+1)r+i) BS on any group Gq.
of order pla+A+i gnd exzponent at most p¢ relative to any subgroup Ua,c = Zj,, where, for
d>1andc=d, Gq./Uq. contains a subgroup of indez p" and exponent at most p¢1 and

where, for i > 0 and c in the range max{1, (d_rli_zzﬂ} <c<d, rank(Gqc/Ugc) > 2r + 1.

Proof: We begin with a (p™+,p™,p"+) BS on Zp" ™ relative to Z; from Theo-
rem 7.6 (i), and use Lemma 4.5 with W = Z;, to obtain a (p"+%,p" ¢ p"t4) BS on Z?f”
relative to Zy,. This provides the initial BS on G¢ relative to Uzz in Theorem 7.5, taking
a=1t=p" and ¢ = 1. We then obtain the required BS on G relative to Uy, provided
that, for each ¢ in the range 1 < ¢ < d, the following condition on j is satisfied for each j in
therange 1 < j < ¢—1: G4./Ug . contains a subgroup of index pld+e=2i=1)r 4nd exponent
at most p/. We now show that this set of conditions can be replaced by the smaller set
stated in the theorem by distinguishing four cases: firstly ¢ < ((1_1,17_2;”, when no condition
on j will be needed; secondly ¢ < d — 1, when the condition on 7 = 1 will suffice; thirdly
¢ = d and 7 = 0, when the condition on 7 = d — 1 will suffice; and fourthly ¢ = d and
i > 0, when the condition on j = 1 and j = d — 1 will together suffice. (In the theorem,
the condition on j = 1 is written in the equivalent form: rank(Gg./Uqg.c) > 2r+14.) Since
the range of j is 1 < j < ¢ — 1, we shall assume ¢ > 1 throughout.

The group Gy./Ug, has order pldte=1)r+i and exponent at most p¢, so we can write
it as [T;—; Zp¥, where a,, > 0 and

iuau:(d—l—c—l)r—i—i. (10)

u=1
Clearly Gy./Uq, contains a subgroup of index p"i and exponent at most p?, where

c

wj= Y (u—j)o. (11)

u=5+1
We shall repeatedly use the fact that
C C—j C
> w-ions (g=3) ¥ w-fa (12)
u=j+1 u=j-+1
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for any integer 8 < j.

In the first case, when ¢ < ((11727&1
and C = c in (12) and substitute from (11) to show that w; < % u—j+1 U0y (10) then
implies that w; < %((d + ¢ — 1)r +14). Rearrangement gives w; — (d +c¢—2j — 1)r <
j(rji) (c— (d_r?:“) —i(j — 1). Since ¢ < (d_rliw, we obtain w; — (d+c—2j — 1)r <
0. Therefore by the definition of wj, G4./U4. always contains a subgroup of index
pldte=21=1r and exponent at most p’ for each j in the range 1 < j < ¢ — 1.

In the second case, when ¢ < d — 1, we assume the condition on 7 = 1 holds and
consider j in the range 2 < j < ¢—1. Take f =1 and C = cin (12) and use (11) to deduce
that w; < (g%{)wl. Now the condition on j = 1 can be written as wy < (d+c¢—3)r and so

—(d+c—2j—1)r < Z_;}(c—kl—d)r. Since ¢ < d—1, we obtain w; —(d+c¢—2j—1)r <O0.

In the third case, when ¢ = d and i = 0, we assume the condition on j = d — 1 holds
and consider j in the range 1 < j < d — 2. We can rewrite (11) as w; = (d — j)ag +

Z;;-H(u J)o, and then put § =0 and C = d — 1 in (12) to show that w; < (d —
fea+ L S0 ua. (10) then implies that w; < (d— j)ag+ 2271 ((2d - 1)r — dag).
Hence w; — (2d 2j—1r < d%l(ozd — 7). Now the condition on j =d—1 gives wyg_1 <,
which from (11) is equivalent to ag < 7. Therefore w; — (2d — 25 — 1)r < 0.

In the fourth case, when ¢ = d and ¢ > 0, we assume the condition on j = 1 and
j = d —1 to hold and consider j in the range 2 < j < d — 2. Rewrite (11) as w; =
(d—jag + Zg_;ﬂ( j)au Take B =1and C =d—1in (12) and use (11) to
deduce that w; < (d — j) (w1 (d— l)ad). Now the condition on j = 1 gives
wi < (2d — 3)r and so w; — (2d 2] -)r <7t ( ag — ). The condition on j =d —1
then gives wg_; = aq <7, and so w; — (2d — 2] —1)r <0.

This completes the proof. O

, we consider j intherange1 < j <c—1. Put =0

The condition on Gy,4/Uq,q in Corollary 7.7 is a consequence of the increase in group
exponent from p?~! to p?. The condition on rank(G./Uy,) derives from the initial BS,
which is defined on Z?f"'i. We note that the range of values of d, 7 and ¢ in Corollary 7.7
for which G4 ./Ug,. must be constrained could be slightly improved because it is sufficient
to ensure that w; — (d+c—2j —1)r < 1 in the proof rather than w; — (d+c¢—2j—1)r <O0.
We have chosen the presented form for clarity; it is straightforward to check in individual
cases whether the conditions are guaranteed to hold.

Corollary 7.8 Let p be an odd prime and let © and r satisfy 0 < ¢ < 2r. There exists a

(P, p (r+i)/2 1 1) BS on ZI%’"H relative to Z;,. For each d and c satisfying 1 < ¢ < d, there
exists a (p (‘H'C)”'i p(Rd+Dr+0)/2 p(d=c+D)ry BS on any group Gy, of order pldtetlrti gng
erxponent at most p© relative to any subgroup Uy, = Z;, where, for d > 1 and ¢ = d,
Gac/Ud,. contains a subgroup of index p” and exponent at most pd1

the range max{1, g:ﬂ} <c<d, rank(Gg,./Uqc) > 3r + 1.

and where, for c in

Proof: By Theorem 7.6 (i) and Lemma 4.5 there exists (p"t%,p("+9/2, 1) BS on /-

relative to Zj, as required. Then by Theorem 4.3 there exists a (p>r+i, pBr+d/2 ™) BS on
Zg’”“ relative to Zj. This provides the initial BS on G¢ relative to Ug¢ in Theorem 7.5,
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taking @ = p"™" and t = ¢ = 1. We then obtain the required BS on Gy, relative to
Ug, provided that, for each ¢ in the range 1 < ¢ < d, the following condition on j is
satisfied for each j in the range 1 < j < ¢ — 1: G4,/Ug, contains a subgroup of index
pld+e=2=1)r and exponent at most p/. These conditions on j are identical to those in the
proof of Corollary 7.7 and can likewise be replaced by a smaller set of conditions. The
only difference is that here Gy /U, has order p(dt¢=Dr+(r+9) rather than p(dte—1r+i,
Since the replacement of conditions on j in the proof of Corollary 7.7 does not rely on
the inequality ¢ < r, this part of the proof carries over completely with r + 4 used instead
of each occurrence of 4. O

Corollary 7.9 Let i and r satisfy 0 < i < 2r. There exists a (2", 20"t)/2 1) BS on
75 x 75 relative to the subgroup 75 of Z4. For each d and c satisfying 2 < ¢ < d, there
exists o (2(4te=2r+i o((2d=1)r+i)/2 o(d=c+1)r) BS on any group Gg. of order 2(d+e—Dr+s
and exponent at most 2¢ relative to any subgroup Uy . = 75, where Uy is contained in a
subgroup of G4, isomorphic to Zj and where all of the following hold:

i) Forc=d, G4./Uy. contains a subgroup of indez 2°™™%} and exponent at most 29~ 1.
b bl g

(ii) Fori<r andd>2 and c=d—1, Gq./Uy. contains a subgroup of indezx 2"+ and
exponent at most 2972,

(iii) For i > r and c in the range max{1, w} <c<d, rank(Ggc/Uqc) > 1+ i.

Proof: By Theorem 7.6 (iii) and Lemma 4.5 there exists a (271, 2("+/2 1) BS on
7, x 7 relative to the subgroup Z5 of Z}. Then by Theorem 4.3 and Lemma 4.4 there
exists a (22717, 20r+0)/2 97) BS on Z 7% x Z5T72¥ relative to the subgroup Z of Z} for each
u in the range 0 < u < min{r,i}. Equivalently, there exists a (2271%,207+9)/2 27) BS on
any group G of order 237+% and exponent at most 4 relative to any subgroup U =75,
where U9 is contained in a subgroup of G2 isomorphic to Zj and where G22/Us 2
contains a subgroup of index omin{ri} and exponent 2. This is the case d = ¢ = 2 of the
Corollary. We claim that this implies the existence of the required BS on Gg4, relative
to Uy provided that, for each c in the range 2 < ¢ < d, the following condition on j is
satisfied for each j in the range 1 < j < ¢ —1: G4./Uy. contains a subgroup of index
ld+e=2j=2)r+min{ri} and exponent at most 27. This claim does not follow directly from
Theorem 7.5 with ¢ = 2 because of the presence of a subgroup condition on Ga2/Us 3.
However the proof of Theorem 7.5 can be modified to establish the claim. The constraint
that Uy is contained within a subgroup of G4, isomorphic to Zj (which derives from
the corresponding constraint on Uzg) is equivalent to rank(Gq./Uq.) = rank(Gg.) and
so can be regarded as a constraint on G4, which does not affect the analysis of Gg.c/Ug,
which follows.

For 7 > r the conditions on j are identical to those in the proof of Corollary 7.7 with
p = 2, the only difference being that here G4./Uqg . has order o(d+e=1)r+(i=7) for 4 in the
range r < i < 2r rather than 2(¢+¢=Dr+i for § in the range 0 < i < r. Therefore the
replacement of conditions on j in the proof of Corollary 7.7 carries over completely with
1 — r used instead of each occurrence of ;.
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For i < r, the remainder of the proof is similar to that of the first and third cases

of Corollary 7.7, with the equation > ¢_; ua, = (d + ¢ — 2)r + 7 replacing (10). When

c < W, we do not assume any condition on j and consider j in the range 1 <

j < ¢ — 1. The inequality w; < % ZZ:]-. 41 Uy previously found now implies that
wj— (d+c—2 —2)r —i < T(c— E2H) <0 When ¢ > @2 (which implies

T
that ¢ = d — 1 or ¢ = d), we assume the condition on j = ¢ — 1 holds and consider j in
the range 1 < j < ¢ — 2. Following the same argument as previously, w; < (¢ — j)a. +

c;izj Z;;-H Uy < (c—j)ozc—l—%((d—i—c—Q)r—l—z’—cac). In the case ¢ = d—1 we obtain

wj—(2d—2j—3)r—i < d%Q(ad_l —(r—+1)) and the assumed condition on j = d—2 implies

agq—1 < 7+ 1, whereas in the case ¢ = d we obtain w; — (2d —2j —2)r —i < %(ad —1)
and the assumed condition on j = d — 1 implies ag <. O

The condition in Corollary 7.9 that U, = Zj is contained in a subgroup of Gg4.
isomorphic to Z} is necessary when r + ¢ is odd, by Lemma 7.4.

Corollary 7.10 There exists a (8,4,2) BS on 73 x Zy relative to the subgroup 73 of 73.
For each d and c satisfying 2 < ¢ < d, there exists a (224+2¢73 22d 92d=2c+3) B on any
group Gg. of order 22d+2c—1 gnd exponent at most 2¢ relative to any subgroup Uge = 73,
where Uy . is contained in a subgroup of Gy . isomorphic to 72 and where, for d > 2 and
c=d, G4./Ug. contains a subgroup of index 4 and exponent at most 20-1,

Proof: The (8,4,2) BS is given in Theorem 7.6 (iv). By Theorem 4.3 and Lemma 4.4
there exists a (32,16,8) BS on any group G of order 128 and exponent 4 relative to
U = 72, where U is contained within a subgroup of G isomorphic to ZZ. This provides
the initial BS on Gg¢ relative to Uzz in Theorem 7.5, taking p = r = 2, a = 8 and
t = ¢ = 2. By making use of the additional constraint that Uzg is contained within
a subgroup isomorphic to Z;2 we then obtain the required BS on Gy . relative to Uy,
provided that, for each ¢ in the range 2 < ¢ < d, the following condition on j is satisfied
for each j in the range 2 < j < c—1: G4,/Uqg, contains a subgroup of index 92(d+e—2j-1)
and exponent at most 2/. The remainder of the proof is similar to that of the first and
third cases in the proof of Corollary 7.7. As in the proof of Corollary 7.9, the constraint
that Uy, is contained within a subgroup of Gy . isomorphic to 72 does not affect the
analysis of Gg./Uy.c-

When ¢ < d — 1 we do not assume any condition on j and consider j in the range
2 < j < ¢—1. By similar reasoning to that used previously we show that w; — 2(d +
c—2j-1) < 2%(c +1—d)+ (j —c¢)/c < 0. When ¢ = d we assume the condition on
j =d —1 to hold, so that ag < 2, and consider j in the range 2 < 5 < d — 2. We obtain
wj —2(2d—2j —1) < 75 ((ag—2)+j+1-d) <0. O

Further examples of BSs can be constructed from those in Corollaries 7.7-7.10 using
Lemma 2.1. We believe the set of BSs so produced to be complete in the sense that no
other examples could be obtained from the four sources of initial BSs of Theorem 7.6
using the underlying construction of Theorem 4.3. In Section 8 we discuss further some
implications of Corollaries 7.7-7.10.
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A fifth source of initial BSs is given by Chen, Ray-Chaudhuri and Xiang’s construc-
tion [7] of a (227~ 27 227=1 27—1) semi-regular RDS in any group G of order 23"~! and
exponent 4 relative to U =2 Z5, where U is contained within a subgroup of G isomorphic
to Z; and r > 1 is odd. We can regard this as a (227~1,2("=1/2 1) BS on the stated
group and subgroup and use the above procedure to obtain an additional corollary. It
can be shown that the resulting BSs have parameters in the same families as those of
Corollary 7.9 and that (apart from initial examples) the BSs are defined on substantially
the same set of groups. Nonetheless this method allows a relaxation of condition (iii) of
Corollary 7.9, involving rank(Gg../Uq.) for i > r, for certain values of i when r > 5. For
example, the minimum rank of G4, when 7 = 5 and 7 = 8 can be reduced from 13 to 12
in this way.

We conclude this section by modifying Theorem 7.5 to deal with groups whose order
is not a prime power.

Theorem 7.11 Let W be a group of order w > 1, let p be a prime not dividing w and
let 1 > 1. Suppose there exists a (p"aw,p"v/awt,p"t) BS on any group Gee x W, whose
Sylow p-subgroup Gz has order p?"a and exponent at most p¢, relative to any subgroup
Uee = 7oy, where a > per=1)=2r=1 4nd & > 1. Then for each d and c satisfying ¢ < ¢ < d,
there ezists a (p{@+e=2e41r gy, pld=etry/aut, pld=ct1)rt) BS on any group Gi. x W,
whose Sylow p-subgroup G4 has order pld+e=2e42)r g and exponent at most p°, relative to
any subgroup Uq . = 7y, provided that, for each j in the range € < j < c—1, Ggc/Uq,
contains a subgroup of index p(tc=2=1" and ezponent at most p’.

Furthermore the theorem remains true for ¢ > 2 if Uz is additionally constrained
to be contained within a subgroup of Gz isomorphic to Z;Q, provided that each Uy, is
likewise contained within a subgroup of Gy . isomorphic to Z;)Q.

Theorem 7.11 can be proved from Theorem 7.1 in a similar manner to Theorem 7.5:
the important calculations involve only the Sylow p-subgroup Gy . and not the group
W. We did not give this more general form earlier in order to avoid the introduction
of several new parameters at the same time. In particular cases, the conditions on sub-
groups of Gg./Uq. in Theorem 7.11 can be replaced by a smaller set of conditions, as in
Corollaries 7.7-7.10. Theorem 7.11 could have been used in this way to prove the results
of Corollary 7.3. Moreover Theorem 7.11 has potential use in determining the existence
of new families of BSs, subject to finding appropriate initial BSs on groups whose order
is not a prime power.

8 Application to semi-regular relative difference sets

In this section we use Theorem 2.2 to deduce the existence of families of semi-regular
RDSs in groups G relative to subgroups U = Z;, from the BSs constructed in Section 7.
In particular we show that the order of G can grow without bound for fixed rank 2r. We
are not aware of any abelian groups G known to contain semi-regular RDSs relative to
an elementary abelian subgroup which are not covered by these results.
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We begin with the special case of a subgroup U of order p” = 2. This is a rich
source of RDSs in groups G whose order has distinct prime factors, deriving from the
m—1

(m(™3=), m,4,+) covering EBSs on groups M constructed in Corollary 6.7 (i).

Corollary 8.1 Let M be either the trivial group or the group []; Z3«; X I1; Z;l,j, where
a; > 1 and where p; is an odd prime, and let |M| = m?. For each d > 1 the following

exist:

(i) A (229m?2,2,229m?2,229-1m2) semi-regular RDS in Gq x M relative to any subgroup
Uy of order 2, where Gq is any group of order 224t and exponent at most 24+1.

(ii) A (224+1m?2, 2,224+ 1?2 224m2) semi-regular RDS in Gqx M relative to any subgroup
Uy of order 2 contained in a subgroup of G4 isomorphic to Z4, where Gq is any group
of order 22412 and exponent at most 2412,

Proof: For (i), G4 contains a subgroup of index 2 and exponent at most 2¢ containing
Ug. Apply Theorem 2.2 to the case ¢ = d of Corollary 7.3 (i).

For (ii), G4 contains a subgroup S of index 2 and exponent at most 2%+! such that Uy
is contained in a subgroup of S isomorphic to Z4. Put ¢ = d in Corollary 7.3 (ii), replace
d by d + 1 throughout and then apply Theorem 2.2. O

Corollary 8.1 was proved for trivial M by Ma and Schmidt [37] and for all appropriate
groups M (as described in Section 6) by Jedwab [27] via lengthy computations on binary
arrays. (Jungnickel [28] earlier noted that a Hadamard difference set with parameter N =
24~ in a group W, of order 22¢m? can be used to construct a RDS with the parameters
of Corollary 8.1 (i) in the subset of groups having the “splitting” form Uy x W,.) Davis [11]
used techniques introduced by Turyn [55] to show that the exponent bound of 2¢+! on Gy
in Corollary 8.1 (i) is necessary as well as sufficient for trivial M, and Pott [47] proved the
corresponding result for the exponent bound 2¢+2 in Corollary 8.1 (ii). Exponent bounds
on G4 when M is nontrivial can be obtained for both parts of the Corollary by similar
methods, subject to number theoretic conditions. As already noted, the condition in
Corollary 8.1 (ii), that Uy is contained in a subgroup of G4 isomorphic to Zg4, is necessary
by Lemma 7.4. Jungnickel [28] has shown that the existence of a (2m,2,2m,m) semi-
regular RDS (not necessarily in an abelian group) implies the existence of a Hadamard
matrix of order 2m, which in turn implies that m = 1 or m is even (see Seberry and
Yamada [51] for a recent survey of Hadamard matrices). Therefore we cannot substitute
the value d = 0 in Corollary 8.1 (ii) when M is nontrivial (although we can when M is
trivial).

In the remainder of this section, the groups G containing RDSs will be p-groups. The
most extensive previous results for RDSs are for r = 1, so we next take the order of U to
be an odd prime p.

Corollary 8.2 Let p be an odd prime.

(i) For each d > 1, there exists a (p*¢,p,p*¢,p?? 1) semi-regular RDS in any group of

order p?@t1 and exponent at most p?T! relative to any subgroup Uy of order p.
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(ii) For each d > 0, there ezists a (p2d+1,p,p2d+1,p2d) semi-reqular RDS in any group
Gyq of order p***? and exponent at most p?*! relative to any subgroup Uy of order p,
except possibly when G =2 ZZQ or when Gy4/Uy = Zpit1 X Zipa for d > 1.

Proof: The proof is by application of Theorem 2.2 to the following BSs.

For (i), G4 contains a subgroup of index p and exponent at most p¢ containing Uj.
The case 7 = 1, i = 0, ¢ = d of Corollary 7.7 shows that there exists a (p??~!1,p?, p) BS
on any group of order p°¢ and exponent at most p¢ relative to any subgroup of order p.

For (ii), put 7 = 1 and 4 = 0 and consider the initial BS of Corollary 7.8 on ZIQ,T”
together with the case d = 1 of Corollary 7.8. This gives a (p,p'/?,1) BS on ZIQJ relative
to Z, and a (p?,p%/2,p) BS on Z% relative to Z,. This gives the result for d = 0 and d = 1.
For d > 1, we have excluded the cases G4 = Z§d+1 and Gg = Uy X Zpa+1 X Zpa. Therefore

G4 contains a subgroup S (containing Uy) of index p and exponent at most p? for which
S 2 Uy x Zid' The case r = 1, i+ = 0, ¢ = d of Corollary 7.8 shows that there exists

a (p?®,p(24+1)/2 p) BS on any group Sy of order p?t! and exponent at most p? relative

to any subgroup Uy of order p except possibly when d > 1 and S;/Ug = ng, which is
equivalent to S; = Uy x Z?)d. O

Corollary 8.2 (i) and many of the cases of Corollary 8.2 (ii) were proved by Ma and
Schmidt [37]. Davis [11] showed that the exponent bound of p¢*! in Corollary 8.2 (i) is
necessary, and Ma and Pott [36] established the corresponding bound for Corollary 8.2 (ii).
It follows from this and from our earlier discussion of the case p” = 2 that for p prime,
the only abelian groups G of order p**! in which the existence of a (p*, p, p®,p*~!) RDS
relative to a subgroup U of order p remains unknown have p odd, w = 2d + 1, and either
G = szH or G =U x Zpd+1 X Zpd. We have chosen to express the existence condition
in Corollary 8.2 (ii) for d > 1 in terms of G4/Uy, in order to emphasise the importance of
the position of U, within G.

For r = 1, all the RDSs arising from the BS families of Section 7 via Theorem 2.2 can
be obtained by taking ¢ = d. However for r > 1, each value of ¢ gives rise to different
RDSs. For example, take d =4, r = 2 and ¢ = 0 in Corollary 7.9. Using Theorem 2.2 we
obtain a (218, 4,2'® 216) semi-regular RDS in certain groups G. containing a subgroup
S, of order 2872¢ and exponent at most 2¢ relative to a subgroup U, = Z%. In the case
¢ = 2, the maximum exponent of G, is 2'° and the minimum rank is 6, both of which are
attained by G = Zg10 x Z3 and any Us. In the case ¢ = 3, the maximum exponent of G,
is reduced to 2% but the minimum rank is now 5, attained by G3 = Zge x Z3 x Z4 and
any Us. In the case ¢ = 4, the maximum exponent of G, is further reduced to 2% but the
minimum rank becomes 4, attained by G4 = Zos x Z3; and any Uy.

This shows that for the group G containing the RDS, a small rank is associated with
a small exponent. But for the subgroup S on which the underlying BS is defined, we
have the usual correspondence between small rank and large exponent. (In the above
example, minimum rank 6 and maximum exponent 4, minimum rank 5 and maximum
exponent 8, and minimum rank 4 and maximum exponent 16.) For this reason we believe
that the natural place to consider exponent bounds is the BS group S rather than the
RDS group G. In our opinion the most interesting RDS examples are those for which
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the underlying BS group has small rank and large exponent. We shall therefore mostly
concentrate on the RDSs arising from Corollaries 7.7-7.10 for the value ¢ = d. Further
RDSs can be obtained for ¢ < d by direct reference to the Corollaries. To highlight the
central results we shall also omit RDSs arising from the initial BSs of the Corollaries,
which would require a separate statement of conditions.

Henceforth we take r > 1. We now review the previous state of knowledge for a
(p”,p",p",p*" ") semi-regular RDS in an abelian group G relative to U = Zy, where p is
prime and w > r > 1. The best known nonexistence results are that if such RDSs exist
then the following exponent bounds apply: exp(G) < p**t! for w = 2a [11]; exp(GQ) <
p®*! for p odd and w = 2a+1 [36]; and exp(G) < 2°*2 for p = 2 and w = 2a+1 [47]. The
first exponent bound is attained for o > r and any p by G = Zja+1 x Z;+a_1 and any U =
Zy,. To show this, apply Theorem 2.2 to the BSs of Corollary 4.2 followed by Lemma 4.5.
The first bound is also attained for « > 1 and p = r = 2 by G = Zga+1 X Zy4 X G, where
U = 73 is contained in the first two direct factors of G and where G, is any group of
order 2% ! and exponent at most 4, except possibly Gz = Z4. To show this for o > 2,
apply Theorem 2.2 to the BSs of Theorem 5.1 (ii) and (iii). (These examples can also be
obtained by taking the minimum value of ¢ in certain of the Corollaries of Section 7.) As
already discussed, we believe that the RDS group is not the natural place to determine
an exponent bound.

On the existence side, the previous state of knowledge for » > 1 is summarised in
Table 1. In stating these results we have applied the method of contraction of RDSs
(the case t = 1 of Lemma 4.5) as appropriate. The construction of Leung and Ma [33]
applies to many groups, of which we have included only those of rank less than 5r. This
is the only previous construction for which the rank of G does not necessarily grow with
the order of the group. The RDSs in Table 1 can also be combined using the “product”
construction, due to Davis [8] and Pott [48]. The product construction carries over to
BSs and we now state it in this form without proof, but we shall only require the RDS
part, namely the case t =¢' = 1. The principal disadvantage of the product construction
is that under repeated application the rank of G is forced to grow.

Theorem 8.3 Let G be a group of order uaa' containing a subgroup U of order u, and
let H and H' be subgroups of G of order ua and ua' respectively, where H N H' = U.
Suppose there exists a (a,+/at,t) BS on H relative to U and there exists a (a,/a't',t)
BS on H' relative to U. Then there exists a (aa’,Vaad'tt',tt") BS on G relative to U.

(Leung and Ma [33] and Chen, Ray-Chaudhuri and Xiang [7] have also given con-
structions for semi-regular RDSs in certain p-groups relative to an arbitrary subgroup of
order p", and Schmidt [49] has exhibited a (16,4,16,4) RDS in U x Z4 X Z3 with U = Z,.)
To our knowledge no abelian groups other than those described have been previously
shown to contain semi-regular RDSs.

We now show how these results can be improved for U = Z7 by applying Theorem 2.2
to the Corollaries of Section 7, firstly taking p = 2.

Corollary 8.4 There exists a (224713 2r 22dr+j 2Q2d=1r+i) semi-regular RDS in the fol-
lowing groups Gq of order 2241+ relative to any subgroup Uy = 75, where j and r
satisfy 0 < j < 2r:
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(i) When j=0 and r=2. For each d > 2, any group Gy containing a subgroup Sy of
index 8 and ezponent at most 2% such that Uy is contained in a subgroup of Sg
isomorphic to 73 and such that, for d > 2, S;/Uy contains a subgroup of index 4
and exponent at most 24-1,

(ii) When j is even. For each d > 1, any group Gy containing a subgroup Sy of in-
dez 2719/2 and ezponent at most 2¢ such that, for d > 1, Sq/Uq contains a sub-
group of index 2" and ezponent at most 24~ and such that, for j > 0 and d > 1,
rank(Sg/Ug) > 2r + j/2.

(iii) When j<r. For each d > 2, any group G4 containing a subgroup Sy of index 2"
and exponent at most 2¢ such that Uy is contained in a subgroup of Sy isomorphic
to Z) and such that Sq/Uy contains a subgroup of index 2" and exponent at most
24=1 and such that, for j > 0, rank(Sy/Uy) > 2r + 3.

(iv) When j=r. For each d > 2, any group G4 containing a subgroup Sq of index 22"
and exponent at most 2% such that Uy is contained in a subgroup of Sy isomorphic to

n and such that Sq/Uy contains a subgroup of index 27 and exponent at most 2471

(v) When j>r. For each d > 1, any group Gy containing a subgroup Sy of index 2" and
exponent at most 2971 such that Uy is contained in a subgroup of Sq isomorphic to

n and such that Sq/Uy contains a subgroup of index 20" and exponent at most 2¢.

Proof: We apply Theorem 2.2 to certain of the families of BSs constructed in Corol-
laries 7.7, 7.9 and 7.10, putting p = 2 and ignoring the initial BSs.

For (i), use the BSs from Corollary 7.10 with ¢ = d. For (ii), use the BSs from
Corollary 7.7 with ¢ = d and set 2; = j. For (iii), use the BSs from Corollary 7.9 with
¢ =d and set i = j 4+ r. For (iv), use the BSs from Corollary 7.9 with ¢ = d — 1 and
d > 3, set i = j—r = 0 and then replace d by d+ 1 throughout. For (v), use the BSs from
Corollary 7.9 with ¢ = d and d > 2, set © = j — r and then replace d by d + 1 throughout.
O

The case j = r is dealt with separately from the case j > r in Corollary 8.4 because,
when 7 = 0, the set of BSs obtained from Corollary 7.9 with ¢ = d — 1 strictly contains
the set of BSs obtained with ¢ = d, by applying Lemma 2.1 with s = 2" (whereas when
i > 0 this is not the case).

Let P(i) be the number of partitions of the positive integer i. Then we can take
j =rand Sq = 727 in Corollary 8.4 (iv) to show that for each d > 2 there exists a
(22d+1)r gr 9(2d+1)r 92dry semi-regular RDS in P(2r) nonisomorphic groups G of rank 2r
relative to any subgroup 75, including G4 = Z2,, and Gq = Zya+or x Z2;'. This
shows that although the group rank must be at least 2r in order to use the underlying
construction of Theorem 4.3, it need not grow any larger.

To illustrate in detail how Corollary 8.4 improves on previous results, take r = 2 and
d = 3 and consider which abelian groups G contain a (2217, 4,212+7 210+J) semi-regular
RDS relative to a subgroup U = 7Z3. We shall refer to the results of Table 1, using () to
indicate the condition that U is contained in a subgroup of G isomorphic to Z2.
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When j = 0, the RDS parameters are (212, 4,2'2,210) and G has order 2!*. Previously
it was known that G could be any group of rank at least 8 using (B), any group of rank
at least 7 such that () is satisfied using (C), or the group U x Zg of rank 6 using (E)
with @ = 2, d = 3. We can now use part (i) of Corollary 8.4 to include five groups G of
rank 4, namely Zgyq X Zg X 72y, 1igo X Zig X 7ig X g, Zi39 X Zg, Z‘;’G X Z4 and Z%G X Z% for any
U = 72 as well as many new groups of rank 5 and 6 such that (x) is satisfied. Part (ii)
of Corollary 8.4 is less powerful than part (i) in terms of large exponent, but it does not
require the condition (%) on G. Parts (i) and (ii) together show that G can be any group
of exponent at most 16 and U any subgroup, except when G = Z2 x Z3; and U intersects
one or both of the first two direct factors of G in a nonidentity element.

When j = 1, the RDS parameters are (2!3,4, 23 2!1) and G has order 2!°. Assume
that G and U mentioned in this paragraph satisfy (), which is necessary by Lemma 7.4.
Previously it was known that G could be any group of rank at least 10 and exponent at
most 4 using (F), or any group of rank at least 8 having the form Z% x Zy x G (where U
is contained in the first two direct factors) using the RDS product construction on (B)
with @ = 5 and (A) with @ = 3. We can now use part (iii) of Corollary 8.4 to include six
groups of rank 5, namely Zzo X Z3 X Zo, Z3g X Z3 X Zo, Z16 X Z3 x Z4 and Z3 for any U,
and Z39 X Z% X Zﬁ and Z%ﬁ X 7ig X Zi for any U which is not contained in the last two
direct factors, as well as many new groups of rank 6 and higher. Part (iii) also shows
that G can be any group of exponent at most 8 and U any subgroup

When j = 2, the RDS parameters are (2'4, 4, 2'* 212) and G has order 2'6. Previously
it was known that G could be any group of rank at least 9 using (B), any group of rank
at least 8 such that (x) is satisfied using (C), or the group Z3 x Z$ of rank 6 where U
is contained in the first two direct factors using the RDS product construction on (A)
with @ = 2 and (E) with @ = 2, d = 3. We can now use part (iv) of Corollary 8.4 to
include five groups of rank 4 (five being the number of partitions of 2r = 4), namely
Zaog X 73, Ziga x Z1g x 72, 73y x 73, 732 x Z3s x Zg and Zig for any U, as well as many
new groups of rank 5, 6 and 7 such that (x) is satisfied. We can also use part (ii)
of Corollary 8.4 to include examples not satisfying (x) for which G has low rank, for
example G = Zgy X Zg X Z2 x Z4 X Zy where U is contained in the first two direct factors
of G.

When j = 3, the RDS parameters are (2!5,4,2!5 2'3) and G has order 2!7. Assume
that all G and U mentioned in this paragraph satisfy (*), which is necessary by Lemma 7.4.
Previously it was known that G could be any group of rank at least 9 using (D) with
a =3, d = 2, or the group Z? x Zy x Zg of rank 7 (where U is contained in the first
two direct factors) using the RDS product construction on (A) with @ = 3 and (E) with
a =2, d = 3. We can now use part (v) of Corollary 8.4 to include three groups of rank 4,
namely Zgo X Z3¢ for any U, and Zgy x Z34 x Zg and Z%, x Z16 X Zg for any U which does
not intersect the last direct factor in a nonidentity element, as well as many new groups
of rank 5 to 8. Part (v) also shows that G can be any group of exponent at most 16 and
U any subgroup.

Finally we apply Theorem 2.2 to the Corollaries of Section 7 for p odd. This also
gives substantial improvements over previous results.
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Corollary 8.5 Letp be an odd prime. There ezists a (p2¥ 13, p", p2@+3 pRd=1r+i) semi-
regular RDS in the following groups Gq of order p2d+1)r+i relative to any subgroup Uy =

Zy,, where j and r satisfy 0 < j < 2r:

(i) When j is even. For each d > 1, any group G4 containing a subgroup Sq of in-
dez p"ti/2 and ezponent at most p* such that, for d > 1, Sa/Uq contains a sub-
group of indez p" and exponent at most p® ' and such that, for 7 > 0 and d > 1,
rank(Sd/Ud) >2r+ j/2

(ii) When j<r. For each d > 2, any group Gy containing a subgroup Sy of indezx p" and
exponent at most p®~1 such that, for d > 2, Sq/Uy contains a subgroup of index p"
and ezponent at most p®~2 and such that, for d > 2, rank(S;/Uy) > 4r + j.

(iii) When j>r. For each d > 1, any group G4 containing a subgroup Sq of index p" and
ezponent at most p® such that, for d > 1, Sq/Uy contains a subgroup of index p"
and exponent at most p®' and such that, for d > 1, rank(S;/Uy) > 2r + ;.

Proof: The proof is similar to that of Corollary 8.4, using Corollaries 7.7 and 7.8. O

In particular, we can take j = 0 and Sy = ZZS in Corollary 8.4 (ii) and Corollary 8.5 (i)
to show that for each d > 1 and for any prime p there exists a (deT,pr,pZdT,p(Qdfl)T)
semi-regular RDS in P(r) nonisomorphic groups G4 of rank 2r relative to any subgroup
Zy, including G4 = Z;d+1 X Z;d and Gg = Zpasr X Z;Zil. (P(r) represents the number of

partitions of r.)

9 Open problems and nonabelian constructions

We briefly note here some developments which occurred after submission of the original
manuscript.

1. Chen [5], [6] constructed a new family of difference sets with parameters (v, k, A\,n) =

4242 -1 24+ 2(¢*4? - 1) 1), @ (g—1) ¢ +1 g2
¢?-1 )’ g+1 ’ g+1 )’
(13)

for integer d > 0 and ¢ a power of 2, 3 or p?, where p is an odd prime. With
d = 0 the parameters (13) correspond to the Hadamard parameters with N = ¢;
with ¢ = 2 the parameters (13) correspond to the new family of parameters (4);
and with ¢ = 3 the parameters (13) correspond to the Spence parameters with d
replaced by 2d + 1.

Expressed in terms of the definitions of this paper, the difference sets constructed

by Chen arise from a (q2d+1(q;—1),q2d+1,4(q2:;f1_1), +) covering EBS on the ele-
2d+2 2041 (g _

for ¢ = 3" or p?", and from a (g
),+) covering EBS on the elementary abelian group of order

mentary abelian group of order ¢

2d+271
1)7 q2d+13 2(q -1
2¢%4*2 for ¢ = 2". The authors [14] have shown that these covering EBSs can be
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recursively constructed within the unifying framework of this paper by modifying
Theorems 3.2 and 4.3 to deal with (a,m,t) BSs having m # +/at. Such BSs always
give rise to semi-regular divisible difference sets.

2. Jungickel and Schmidt [30] proposed that difference sets whose parameters (v, k, A, n)
satisfy gcd(v,n) > 1 should be considered as a special class. Indeed the five known
parameter families satisfying this condition (namely Hadamard, McFarland, Spence,
and parameter families (4) and (13)) are also the five families which have been shown
to be amenable to the methods of this paper.

3. Schmidt [50] reduced the exponent bound in Corollary 5.5 from 8 to 4. Combined with
Corollary 5.3 (iv) this gives a necessary and sufficient condition for the existence
of difference sets with parameters (4), provided that 2 is self-conjugate modulo the
group exponent, with the possible exception of the group Z3 x Zs. Schmidt [50] also
obtained exponent bounds for difference sets with parameters (13).

4. Davis, Jedwab and Mowbray [15] constructed new families of semi-regular RDSs in
groups whose order is not a prime power, and applied the recursive construction
of Theorem 7.11 followed by Theorem 2.2 to obtain further such families. The
forbidden subgroup in these constructions has order 2" or 3, whereas previously the
only known examples were those of Corollary 8.1 in which the forbidden subgroup
has order 2.

In the remainder of this section, we list some open problems which are suggested by
the techniques and results of this paper. We then discuss two possible approaches to
generalising the definitions and constructions to deal with nonabelian groups.

It appears from our results that the objects we have called BSs and covering EBSs
are fundamental to the construction of difference sets and semi-regular RDSs. We believe
that future research could usefully consider the following questions (all groups are still
implicitly abelian):

1. Can the unifying framework of this paper be extended to encompass all known parame-
ter families of difference sets, including Projective Geometries, the Paley-Hadamard
family and the Twin Prime Power family?

2. Can we find suitable BSs and covering EBSs for use in Theorem 3.2 (modified as in
[14] if necessary) to construct difference sets via Theorem 2.4 whose parameters do
not belong to any currently known family?

3. The construction of Hadamard difference sets in Section 6 relies on the existence of a
(m(mT_l),m,él, +) covering EBS on a group of odd order m2. Can we find any ex-
amples apart from those of Theorem 6.6 and their compositions under Theorem 6.57

4. The construction of Hadamard difference sets in Section 6 for which n = N? is not a
prime power depends on Theorem 6.5. Is there an analogous composition theorem
for McFarland difference sets or for difference sets with parameters (13)7
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5. A construction for McFarland difference sets with ¢ = 2" in Section 5 relies on the
existence of a (2¢¢,¢%,¢%/2) BS on a group G of order 2¢%*! relative to a subgroup

of order ¢q. Can we find any examples for ¢ > 4 apart from on G = ngﬂ)”l and

7y X ngH)T*l? In particular, can we find a (16, 8,4) BS on a group of order 128 and
exponent 4 (other than Z4 x Z3) relative to a subgroup of order 8, or a (32,16, 8) BS
on a group of order 512 and exponent 4 (other than Z, x Z?7) relative to a subgroup
of order 167

6. Ts there a (320, 88,24, 64)-difference set in Z3 x Zs, the single exceptional group of
Corollary 5.3 (iv)? Theorem 3.2 would establish existence for this group if a (16, 8,4)
BS on Z3 relative to either Z4 or Z3 could be found.

7. (Due to Jungnickel and Schmidt [30]) Most exponent bounds for difference sets in the
class ged(v,n) > 1 depend on a self-conjugacy condition which does not necessarily
hold. Can we find an example for which such an exponent bound is exceeded?

8. Examples of semi-regular RDSs are known for which the forbidden subgroup is not
elementary abelian (see the comment following Theorem 8.3). Can Theorem 4.3 be
modified to construct BSs relative to a subgroup which is not elementary abelian
to bring these RDSs within the framework of this paper?

9. The construction of families of BSs in Section 7 and semi-regular RDSs in Section 8
relies on the existence of initial (a,v/at,t) BSs. Can we find any examples apart
from those of Theorem 7.6 and those mentioned after Corollary 7.107 In particular,
is the (8,4,2) BS of Theorem 7.6 (iv) the case r = 2 of an infinite family of BSs
relative to a subgroup U = Z57

10. Is there a (p2¢t!, p, p?¢+1, p2¢) semi-regular RDS in Z§d+1 or U x Za+1 X Zya relative to
a subgroup U of order p, these being the two exceptional cases of Corollary 8.2 (ii)?

11. We have argued in Section 8 that it is more appropriate to consider exponent bounds
for a BS than for a semi-regular RDS. What can be said about a (p?t®, p?, pd—)

BS relative to a subgroup of order p"?

We have seen in Section 1 that the existence pattern for difference sets in nonabelian
groups is fundamentally different from that in abelian groups. We now consider how to
modify the methods of this paper to deal with nonabelian groups, dropping the implicit
assumption that all groups are abelian. Our first approach is based on techniques due to
Dillon [20], and generalises Theorems 2.2 and 2.4:

Theorem 9.1 Let G be an abelian group.

(i) Suppose there exists a (a,/at,t) BS on G relative to a subgroup U of order u, where
at > 1. Then there ezists a (at,u,at,at/u) semi-regular RDS in G' relative to U,
where G' is any (possibly nonabelian) group containing a central subgroup of index
t isomorphic to G.
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(ii) Suppose there exists a (a,m, h,+) covering EBS on G. Then there exists a (h|G|,ah+
m,ah+m —m?2, m?)-difference set in any (possibly nonabelian) group G' containing
a central subgroup of index h isomorphic to G.

Proof: We give the proof of (ii), the proof of (i) being similar. Let k1 = 11, ko, ...k €
G’ be coset representatives of G in G'. Let {B;} be a (a,m,h,+) covering EBS on
G, where the building block containing a = m elements is Bj, and form the subset
D =Y ,kiB; of G'. If G’ is abelian then we already know Theorem 2.4 and the proof of
Lemma 2.3 that D is a difference set in G’ with the stated parameters. By the characteri-
sation of difference sets in the group ring Z[G'] this is equivalent to DD = m2154+AG,
where A\ = ah + m — m? = ﬂ?‘(ah + 2m) (using the relationship between covering EBS
parameters given after Theorem 2.4 for the last equality). We can therefore obtain the
result by showing that the same equation for DD(=! holds when G’ is nonabelian as
when G is abelian. By the definition of D we can write DD(~1) as the sum of two group
ring elements:

DD =3 kBB V1 + 3 kiBiBY kL
i i#]

Since G is a central subgroup of G’, the first group ring element >, kiBiBZ-(_l)ki_ ! is equal
to Y, BZ-BZ-(_I) whether G’ is nonabelian or abelian, as required.

It remains to consider the second group ring element S =3, kiBiB](-fl)kj_l, taking
i # j. For all nonprincipal characters x of G we have X(BiB‘g*l)) = x(Bi)x(Bj) =0,
where the last equality uses the definition of covering EBS. Therefore BiB](-_l) = ¢;;G for
some integer c;;, and by a counting argument c;; = | B;||B;|/|G|. The definition of covering
EBS gives ¢;; = a(a+m)/|G| wheni or j is 1 and ¢;; = a?/|G| otherwise. Since G is central
and therefore normal in G’, substitution for BZ-BJ(-_I) in S gives the sum 3, cijkikflG.
The terms of this sum having j = 1 are ‘a@(a +m) 3,41 kuG. Likewise the terms of

the sum having 7 = 1 are >- ;4 Cljl(;lkj_lG = ﬁ(a +m) Y21 kuG, since 35,4 k]-_lG =
>_uz1 kuG. The remaining terms of the sum are % Ditjli £l kikle. Regarding k,-k;lG
as a coset of G, we can write kikj_lG as the product of cosets (k;G)(k;G)!. Since the
cosets {kyG | u # 1} form a (h,h — 1, h — 2, 1)-difference set in G'/G (the complement of
the trivial (h, 1,0, 1)-difference set {k1G} in G'/G), the remaining terms of the sum are
2 2

‘%'(h—Z) Yur FuG = |%|(h—2)(G'—G). Therefore S = ‘aa(ah:th)(G'—G) = \NG'-G),
which holds whether G’ is nonabelian or abelian. This completes the proof. O

The constructions of difference sets and semi-regular RDSs in abelian groups given in
this paper can be extended to numerous nonabelian groups using Theorem 9.1 (including
the special case when G’ can be written in the form G x K for some group K.) In
the following discussion we shall concentrate on the construction of difference sets in
nonabelian groups using Theorem 9.1 (ii), but equally we can obtain semi-regular RDSs
in many nonabelian groups by applying Theorem 9.1 (i) to the BS families constructed
in Corollaries 7.3 and 7.7-7.10.

We begin by using the covering EBSs constructed in Theorem 5.2 to obtain difference
sets in nonabelian groups with parameters from the McFarland family, Spence family
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or the new family (4). Applying Theorem 9.1 (ii) to these covering EBSs shows that
Corollary 5.3 remains true for nonabelian groups provided each occurrence of “subgroup”
is replaced by “central subgroup”. For example, Corollary 5.3 (i) becomes: for each d > 0,
there exists a McFarland difference set with ¢ = p” in any (possibly nonabelian) group

d
d“(%lfl + 1) containing a central subgroup isomorphic to Zz(,dﬂ)r

of order g 7 , where p
is prime and r > 1. This result was given by Dillon [20] and was used in Section 2 to
introduce building blocks.

We could similarly apply Theorem 9.1 (ii) to the covering EBSs of Corollary 6.7 (iii)
to obtain difference sets in nonabelian groups with Hadamard parameters. But we can
obtain more general results than this for Hadamard difference sets by taking advantage

of a family of BSs constructed in Section 8:

Theorem 9.2 Let M be either the trivial group or the group [[; Z3«; x [
2

4
j ij , where

a; > 1 and where p; is an odd prime, and let |M| = m?. Then the following exist:

(i) A (24F¢ tm?2,29m, 2972 ) covering EBS on Gq. X M, where d and c satisfy 1 <
c <d and Gy, is any abelian group of order 24+¢ and exponent at most 2.

(ii) A Hadamard difference set with N = 2%m in any (possibly nonabelian) group Ggx M
of order 2242m?  where either d = 0 or Gq contains a central subgroup of order
24+¢ gnd exponent at most 2¢ such that d and ¢ satisfy 1 < ¢ < d.

Proof: For (i), the proof is by induction on d. The case ¢ = d has already been
proved in Corollary 6.7 (iii), so the case d = 1 is true and we can take ¢ < d — 1. Assume
the case d — 1 to be true. By Corollary 7.3 (i) there is a (247¢ 1m?2 24m, 2¢-<+1) BS on
Ga,c X M relative to any subgroup Uy . of order 2, and by the inductive hypothesis there
is a (29+¢=2m?2 29-1m, 2d-¢+1 ) covering EBS on (G4./Usc) X M (since ¢ < d — 1).
The case d then follows from Theorem 3.2.

For (ii), the case d = 0 has already been proved in Corollary 6.7 (iv). All other cases
are obtained by applying Theorem 9.1 (ii) to the covering EBSs of (i). O

Theorem 9.2 (ii) establishes the existence of Hadamard difference sets in large classes
of nonabelian groups. Each value of ¢ in Theorem 9.2 (ii) produces examples which
are not found at any other value of c. For larger values of ¢ the required order of the
central subgroup becomes larger but the group is allowed to have smaller rank. The case
¢ = d of Theorem 9.2 (i), for which the number of building blocks is 4, was given in
Corollary 6.7 (iii) and used to construct Hadamard difference sets in abelian groups in
Corollary 6.7 (iv). The cases ¢ < d of Theorem 9.2 (i) do not improve on Corollary 6.7 (iv)
for abelian groups but can be used to deal with many nonabelian groups, as described. It
would be interesting to know in which 2-groups the existence of a Hadamard difference set
(currently an open problem for groups of order at least 256) remains unknown after taking
into account Theorem 9.2 (ii) and the two known nonexistence results for nonabelian 2-
groups (see [13]). In particular, how many of the 56,092 groups of order 256 remain
open?

Theorem 9.1 (i) and (ii) require G to be a central subgroup of G’. The method of
Dillon [20] shows that this condition can sometimes be replaced by the weaker condition
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that G is a normal abelian subgroup of G’. Under this condition the proof of the Theorem
is unchanged with respect to the group ring element }_, kiBiBJ(-_l)k;l, and it suffices to

force the group ring element ), kiBiB(fl)ki_l = Zi(kiBiki_l)(kiBiki_l)(*l) to reduce to

13

> BiBZ-(_l). This will clearly be the case if the coset representatives k; can be chosen so
that {kiBik;I} = {B;}, in other words so that the map B; — kiBik;1 is a permutation
of the building blocks B;. (When G is contained in the centre of G’ the permutation is
trivial.) Dillon’s conjecture [19] (expressed in the language of this paper) is that the coset
representatives can always be chosen to ensure a permutation of the building blocks of a
(24,24, 2441 ) covering EBS on Z4™!, which would imply that a Hadamard difference set
with N = 2¢ exists in any group of order 224t2 containing a normal subgroup isomorphic
to Zg""l. Davis [9] gave a scheme for choosing coset representatives for this covering EBS
which proves some cases of Dillon’s conjecture and Meisner [43] gave further supporting
evidence, but the conjecture remains open. (The scheme of [9] can be modified to deal
with other covering EBSs, subject to the additional condition that each building block
k;B;k; * is contained in the original collection {B;}.)

The case m = 1 of Theorem 9.2 (i) constructs a (2¢T¢71, 2% 2¢=<+2 ) covering EBS
on any abelian group of order 247¢ and exponent at most 2¢, where 1 < ¢ < d. Suppose it
were possible to choose coset representatives to ensure a permutation of building blocks
for each value of ¢ in this range (the case ¢ = 1 being Dillon’s conjecture), so that the case
m = 1 of Theorem 9.2 (ii) would remain true with “central” replaced by “normal abelian”.
This would still not deal with every 2-group containing a Hadamard difference set, because
Davis and Smith [17] have constructed a Hadamard difference set with N = 2¢ in the
group G4 = (z,y | 22 = de_1 = 1,yzy ! = $2d+2+1) for each d > 2, and G4 does
not contain a normal abelian subgroup of order 2%t¢ and exponent at most 2¢ for any
¢ satisfying 1 < ¢ < d. Furthermore the existence of a Hadamard difference set in Gy
cannot rely on the existence of a covering EBS on an abelian group contained as a normal
subgroup in G4 because Theorem 9.1 (ii) would then give a Hadamard difference set in
the abelian group (z,y | 22 =2 =1y = zy) of order 2242 and exponent 293,
which is ruled out by Turyn’s exponent bound [55].

This provides the motivation for our second (more speculative) approach to nonabelian
groups, namely to generalise the definition of building block, BS and covering EBS to
allow the group G in Theorem 9.1 to be nonabelian. Liebler [34] has promoted the
use of representation theory to study difference sets in nonabelian groups, as a natural
generalisation of the use of character theory for abelian groups. A representation ¢ of a
group G is a homomorphism from G to the multiplicative group of s x s matrices, where
the degree s of the representation is determined by G. Lemma 1.1 (i) generalises to:
the k-element subset D of a group G of order v is a (v, k, A, n)-difference set in G if and
only if qS(D)WI = 4/nl for every nontrivial irreducible representation ¢ of G, where
ml is the conjugate transpose of ¢(D) and I is the s X s identity matrix. We might
define a building block B in a group G with modulus m to be a subset of G such that
for all nontrivial irreducible representations ¢, the representation sum ¢(B) = 3° g ¢(9)

is either 0 or satisfies ¢(B)¢(B)I = mls;. Then a (a,m,t) building set on G relative
to U would be a collection of ¢ building blocks in G with modulus m, each containing
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a elements, such that for every nontrivial irreducible representation ¢ of G exactly one
building block has nonzero representation sum if ¢ is nontrivial on U and no building
block has nonzero representation sum if ¢ is trivial on U. We could similarly extend the
definition of EBS. Although we believe this approach could be fruitful, it will not allow
us to replace “central” by “normal” in Theorem 9.1 (i), even when G is still assumed to
be abelian. For example, by Theorem 4.2 there is a (2,2,2) BS on Z3 relative to Zy, but
there is no (4,2,4,2) RDS in Dg (the dihedral group of order 8) relative to the central
subgroup of order 2 even though Dg contains a normal subgroup of index 2 isomorphic to
73. The difficulty appears to arise because the restriction of an irreducible representation
to a normal subgroup is not necessarily irreducible.

The following construction of Meisner [44] for Hadamard difference sets (which gen-
eralises the result of applying Theorem 2.4 to the case h = t = 1 of Theorem 3.2) may
be of importance in formulating a general nonabelian approach to the construction of
difference sets and semi-regular RDSs involving representation theory.

Theorem 9.3 Suppose that there exists a (4N?,2,4N?,2N?) semi-regular RDS in a
group H of order 8N? relative to a central subgroup (x) of order 2. Suppose also that
there ezists a Hadamard difference set with parameter N in H/{(z). Then there erists a
Hadamard difference set with parameter 2N in any group G' containing H as a subgroup
of index 2 for which x is a central element of G'.

Meisner [46], [45], [44] has shown that Theorem 9.3 (together with a partial gener-
alisation of Theorem 4.3) can be used to construct Hadamard difference sets in certain
nonabelian groups containing a normal abelian subgroup M, as used in Theorem 9.2 (ii),
for which M is not a central subgroup. These fall outside the scope of Theorem 9.2 (ii).
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| Source | w Min rank(G) | Conditions

(A) Jungnickel [28] « « p=2 (%)
T+« p odd

(B) Davis [10] 2a T+ a>r

(C) Davis and Sehgal [16] | 2« a+1 p=2,r=2a>2((x)
a+2 p=2,r=3,a>5(x)

(D) Pott [47] (2d+Da | (d+ 1o p=2,a>r,d>1(%)
r+(d+1)a |podd,a>r

(E) Leung and Ma [33] 2da T+ 20 a>r,d>1,G=U x zf)g

(F) Chen, Ray-Chaudhuri | 2 — 1 (Ba—1)/2 p=2,a>r, aodd,

and Xiang [7]

exp(G) =4 (¥)

Table 1: A (p“,p",p%,p” ") semi-regular RDS exists in any abelian group G relative
to any subgroup U isomorphic to Z; provided G has the specified minimum rank and
w > r > 1 and the stated conditions are satisfied, where p is prime. (%) indicates the

additional condition that G contains a subgroup isomorphic to Zj containing U.
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